Advertisements
Advertisements
प्रश्न
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
उत्तर
\[y^2 + 1 = x, x \leq 2\text{ is a parabola with vertex }(1, 0)\text{ and symmetrical about + ve side of }x - \text{ axis }\]
\[x = 2\text{ is a line parallel to }y -\text{ axis and cutting }x - \text{ axis at }(2, 0)\]
\[\text{ Consider, a vertical section of height }= \left| y \right| \text{ and width } = dx \text{ in the first quadrant }\]
\[ \Rightarrow\text{ area of corresponding rectangle }= \left| y \right| dx\]
\[\text{ Since, the corresponding rectangle is moving from }x = 1\text{ to }x = 2\text{ and the curve being symmetrical }\]
\[ \therefore\text{ A = area ABCA }= 2 \times\text{ area ABDA }\]
\[ \Rightarrow A = 2 \int_1^2 \left| y \right| dx \]
\[ \Rightarrow A = 2 \int_1^2 y dx ................\left[ \left| y \right| = y \text{ as }y > 0 \right]\]
\[ \Rightarrow A = 2 \int_1^2 \sqrt{x - 1} dx ..............\left[ y^2 + 1 = x \Rightarrow y = \sqrt{x - 1} \right] \]
\[ \Rightarrow A = 2 \left[ \frac{\left( x - 1 \right)^\frac{3}{2}}{\frac{3}{2}} \right]_1^2 \]
\[ \Rightarrow A = \frac{4}{3}\left( 1^\frac{3}{2} - 0 \right)\]
\[ \Rightarrow A = \frac{4}{3}\text{ sq . units }\]
\[ \therefore\text{ Enclosed area }= \frac{4}{3}\text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Find the area lying above the x-axis and under the parabola y = 4x − x2.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.
Using definite integrals, find the area of the circle x2 + y2 = a2.
Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).
Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .
Area bounded by parabola y2 = x and straight line 2y = x is _________ .
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
The area of the region bounded by the line y = 4 and the curve y = x2 is ______.
If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.