मराठी

Draw a Rough Sketch of the Graph of the Curve X 2 4 + Y 2 9 = 1 and Evaluate the Area of the Region Under the Curve and Above the X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.

उत्तर

\[\text{ Since in the given equation }\frac{x^2}{4} + \frac{y^2}{9} = 1,\text{ all the powers of both }x\text{ and }y \text{ are even, the curve is symmetrical about both the axis }. \]
\[ \therefore\text{ Area encloed by the curve and above }x \text{ axis = area }A' BA = 2 \times \text{ area enclosed by ellipse and } x -\text{ axis in first quadrant }\]
\[(2, 0 ), ( - 2, 0) \text{ are the points of intersection of curve and }x - \text{ axis }\]
\[(0, 3), (0, - 3) \text{ are the points of intersection of curve and } y -\text{ axis }\]
\[\text{ Slicing the area in the first quadrant into vertical stripes of height }= \left| y \right| \text{ and width }= dx\]
\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]
\[\text{ Approximating rectangle can move between }x = 0\text{ and }x = 2 \]
\[A =\text{ Area of enclosed curve above }x - \text{ axis }= 2 \int_0^2 \left| y \right| dx\]
\[ \Rightarrow A = 2 \int_0^2 y dx\]
\[ \Rightarrow A = 2 \int_0^2 \frac{3}{2}\sqrt{4 - x^2}dx\]
\[ \Rightarrow A = 3 \int_0^2 \sqrt{4 - x^2}dx\]
\[ \Rightarrow A = 3 \left[ \frac{1}{2}x \sqrt{4 - x^2} + \frac{1}{2} 4 \sin^{- 1} x \right]_0^2 \]
\[ = 3\left[ 0 + \frac{1}{2} \times 4 \sin^{- 1} 1 \right] = 3 \times \frac{1}{2} \times 4 \times \frac{\pi}{2} = 3\pi \text{ sq . units }\]
\[ \therefore\text{ Area of enclosed region above }x -\text{ axis }= 3\pi\text{ sq . units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.1 | Q 10 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the curve y = sin x between 0 and π.


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of the region included between y2 = 9x and y = x


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×