मराठी

Draw a Rough Sketch of the Curve Y2 = 4x and Find the Area of Region Enclosed by the Curve and the Line Y = X. - Mathematics

Advertisements
Advertisements

प्रश्न

Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.

बेरीज

उत्तर

y2 = 4x is a right-handed parabola with vertex at O(0,0) and axis of parabola is x- axis.

y = x is a line passing through origin O(0,0)

Now, Finding their intersection

y2 = 4x

⇒ x2 = 4x

⇒ x2 - 4x = 0

⇒ x(x - 4) = 0

⇒ x = 0 and x = 4

Also y = x ⇒ y = 0 and y = 4

∴ Points of intersections are (0,0) and (4,4)

Required area = `2 int_0^4 sqrt"x" "dx" - int_0^4 "x"  "dx"`

`= 2["x"^(3/2)/(3/2)]_0^4 - ["x"^2/2]_0^4`

`= 2xx2/3 |(4)^(3/2) - 0| - |4^2/2 -0 |`

`= 4/3 xx 8 - 8`

`= (32 - 24)/3 = 8/3`

`= 2 8/3 "sq.units"`  

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×