मराठी

Using Integration, Find the Area of the Region Bounded by the Triangle Whose Vertices Are (2, 1), (3, 4) and (5, 2). - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).

उत्तर

\[\text{ Consider the points A(2, 1), B(3, 4) and C(5, 2) }\]
\[\text{ We need to find area of shaded triangle ABC }\]
\[\text{ Equation of AB is }\]
\[y - 1 = \left( \frac{4 - 3}{3 - 2} \right)\left( x - 2 \right)\]
\[ \Rightarrow 3x - y - 5 = 0 . . . \left( 1 \right)\]
Equation of BC is
\[y - 4 = \left( \frac{2 - 4}{5 - 3} \right)\left( x - 3 \right)\]
\[ \Rightarrow x = y - 7 = 0 . . . \left( 2 \right)\]
Equation of CA is
\[ y - 2 = \left( \frac{2 - 1}{5 - 2} \right)\left( x - 5 \right)\]
\[ \Rightarrow x - 3y + 2 = 0 . . . \left( 3 \right)\]
\[\text{ Area of }\Delta ABC = \text{ Area of }\Delta ABD +\text{ Area of }\Delta DBC\]
\[\text{ In }\Delta ABD, \]
\[\text{ Consider point }P(x, y_2 ) \text{ on AB and }Q(x, y_1 )\text{ on AD }\]
\[\text{ Thus, the area of approximating rectangle with length }= \left| y_2 - y_1 \right| \text{ and width }= dx\text{ is }\left| y_2 - y_1 \right| dx\]
\[\text{ The approximating rectangle moves from }x = 2\text{ to }x = 3\]
\[ \therefore\text{ Area of }\Delta ABD = \int_2^3 \left| y_2 - y_1 \right| dx = \int_2^3 \left( y_2 - y_1 \right) dx \]
\[ \Rightarrow A = \int_2^3 \left( \left( 3x - 5 \right) - \left( \frac{x + 1}{3} \right) \right) dx\]
\[ \Rightarrow A = \int_2^3 \frac{\left( 9x - 15 - x - 1 \right)}{3} dx \]
\[ \Rightarrow A = \int_2^3 \frac{\left( 8x - 16 \right)}{3} dx\]
\[ \Rightarrow A = \frac{1}{3} \left[ 8\frac{x^2}{2} - 16x \right]_2^3 \]
\[ \Rightarrow A = \frac{1}{3}\left[ \left( 4 \times 3^2 \right) - \left( 16 \times 3 \right) - \left( 4 \times 2^2 \right) + \left( 16 \times 2 \right) \right]\]
\[ \Rightarrow A = \frac{1}{3}\left( 68 - 64 \right)\]
\[ \Rightarrow A = \frac{4}{3}\text{ sq . units }\]
\[\text{ Similarly, for }S(x, y_4 )\text{ on AB and }R(x, y_3 )\text{ on DC }\]
\[\text{ Area of approximating rectangle of length }\left| y_4 - y_3 \right|\text{ and width }dx = \left| y_4 - y_3 \right| dx\]
\[\text{ Approximating rectangle moves from }x = 3\text{ to }x = 5\]
\[ \therefore\text{ Area BDC }= \int_3^5 \left| y_4 - y_3 \right| dx\]
\[ \Rightarrow A = \int_3^5 \left( \left( 7 - x \right) - \frac{\left( x + 1 \right)}{3} \right) dx\]
\[ \Rightarrow A = \frac{1}{3} \int_3^5 \left( 20 - 4x \right) dx\]
\[ \Rightarrow A = \frac{1}{3} \left[ 20 x - 4\frac{x^2}{2} \right]_3^5 \]
\[ \Rightarrow A = \frac{1}{3}\left[ \left( 100 - 50 \right) - \left( 60 - 18 \right) \right]\]
\[ \Rightarrow A = \frac{1}{3}\left( 50 - 42 \right) = \frac{8}{3}\text{ sq . units }\]
\[ \therefore\text{ Area of } \Delta ABC =\text{ Area of }\Delta ABD +\text{ Area of }\Delta DBC = \frac{4}{3} + \frac{8}{3} = \frac{12}{3} = 4 \text{ sq . units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 6 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×