मराठी

Using the Method of Integration Find the Area of the Region Bounded by Lines: 2x + Y = 4, 3x – 2y = 6 And X – 3y + 5 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0

उत्तर

The given equations of lines are

2x + y = 4 … (1)

3x – 2y = 6 … (2)

And, x – 3+ 5 = 0 … (3)

The area of the region bounded by the lines is the area of ΔABC. AL and CM are the perpendiculars on x-axis.

Area (ΔABC) = Area (ALMCA) – Area (ALB) – Area (CMB)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 8 Application of Integrals
Exercise 8.3 | Q 14 | पृष्ठ ३७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×