Advertisements
Advertisements
प्रश्न
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
पर्याय
\[\frac{2}{3}\]sq. units
\[\frac{3}{2}\]sq. units
\[\frac{32}{3}\]sq. units
\[\frac{3}{32}\]sq. units
उत्तर

To find the point of intersection of the parabolas equate the equations y = 2x2 and y = x2 + 4 we get
\[2 x^2 = x^2 + 4\]
\[ \Rightarrow x^2 = 4\]
\[ \Rightarrow x = \pm 2\]
\[ \therefore y = 8\]
Therefore, the points of intersection are A(−2, 8) and C(2, 8).
Therefore, the required area ABCD,
\[A = \int_{- 2}^2 \left( y_1 - y_2 \right) d x ...........\left(\text{Where }, y_1 = x^2 + 4\text{ and }y_2 = 2 x^2 \right)\]
\[ = \int_{- 2}^2 \left( x^2 + 4 - 2 x^2 \right) d x\]
\[ = \int_{- 2}^2 \left( 4 - x^2 \right) d x\]
\[ = \left[ 4x - \frac{x^3}{3} \right]_{- 2}^2 \]
\[ = \left[ 4\left( 2 \right) - \frac{\left( 2 \right)^3}{3} \right] - \left[ 4\left( - 2 \right) - \frac{\left( - 2 \right)^3}{3} \right]\]
\[ = \left[ 8 - \frac{8}{3} \right] - \left[ - 8 + \frac{8}{3} \right]\]
\[ = 8 - \frac{8}{3} + 8 - \frac{8}{3}\]
\[ = 16 - \frac{16}{3}\]
\[ = \frac{32}{3}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\] are in the ratio 2 : 3.
Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.
Find the area of the region included between the parabola y2 = x and the line x + y = 2.
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them.
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area of the region included between y2 = 9x and y = x
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.
The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.
Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.
Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.