Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
उत्तर
We are given that: x2 = 2py ......(i)
And y2 = 2px ......(ii)
From equation (i)
We get y = `x^2/(2"p")`
Putting the value of y in equation (ii)
We have `(x^2/(2"p"))` = 2px
⇒ `x^4/(4"p"^2)` = 2px
⇒ x4 = 8p3x
⇒ x4 – 8p3x = 0
⇒ x(x3 – 8p3) = 0
∴ x = 0, 2p
Required area = Area of the region (OCBA – ODBA)
= `int_0^(2"p") sqrt(2"p"x) "d"x - int_0^(2"p") x^2/(2"p") "d"x`
= `sqrt(2"p") * 2/3 [x^(3/2)]_0^(2"p") - 1/(2"p") * 1/3 [x^3]_0^(2"p")`
= `(2sqrt(2))/3 sqrt("p") [(2"p")^(3/2) - 0] - 1/(6"p") [(2"p")^3 - 0]`
= `(2sqrt(2))/3 sqrt("p") * 2sqrt(2) "p"^(3/2) - 1/(6"p") * 8"p"^3`
= `8/3 * "p"^2 - 8/6 "p"^2`
= `8/6 "p"^2`
= `4/3 "p"^2` sq.units
Hence, the required area = `4/3 "p"^2` sq.units
APPEARS IN
संबंधित प्रश्न
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.
Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.