Advertisements
Advertisements
प्रश्न
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
उत्तर
The curve \[y = - x^2\] represents a parabola opening towards the negative y-axis.
The straight line x + y + 2 = 0 passes through (−2, 0) and (0, −2).
Solving
\[y = - x^2\] and x + y + 2 = 0, we get
\[x - x^2 + 2 = 0\]
\[ \Rightarrow x^2 - x - 2 = 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x + 1 \right) = 0\]
\[ \Rightarrow x = 2\text{ or }x = - 1\]
Thus, the parabola \[y = - x^2\] and the straight line x + y + 2 = 0 intersect at A(−1, −1) and B(2, −4).
∴ Required area = Area of the shaded region OABO
\[= \left| \int_{- 1}^2 y_{\text{ line }} dx - \int_{- 1}^2 y_{\text{ parabola }} dx \right|\]
\[ = \left| \int_{- 1}^2 - \left( x + 2 \right)dx - \int_{- 1}^2 - x^2 dx \right|\]
\[ = \left.\left| {- \frac{\left( x + 2 \right)^2}{2}}\right|_{- 1}^2 +\left. \frac{x^3}{3}\right|_{- 1}^2 \right|\]
\[ = \left| - \frac{1}{2}\left( 16 - 1 \right) + \frac{1}{3}\left[ 8 - \left( - 1 \right) \right] \right|\]
\[ = \left| - \frac{15}{2} + 3 \right|\]
\[ = \left| - \frac{9}{2} \right|\]
\[ = \frac{9}{2}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]
Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
Area bounded by parabola y2 = x and straight line 2y = x is _________ .
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.
Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
The curve x = t2 + t + 1,y = t2 – t + 1 represents
If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.
Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.