मराठी

Find the Area Bounded by the Parabola Y2 = 4x and the Line Y = 2x − 4. (I) by Using Horizontal Strips (Ii) by Using Vertical Strips. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.

बेरीज

उत्तर


To find the points of intersection between the parabola and the line let us substitute y = 2x − 4 in y2 = 4x.
\[\left( 2x - 4 \right)^2 = 4x\]
\[ \Rightarrow 4 x^2 + 16 - 16x = 4x\]
\[ \Rightarrow 4 x^2 - 20x + 16 = 0\]
\[ \Rightarrow x^2 - 5x + 4 = 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 4 \right) = 0\]
\[ \Rightarrow x = 1, 4\]
\[\Rightarrow y = - 2, 4\]
Therefore, the points of intersection are C(1, −2) and A(4, 4).
Using Horizontal Strips:-
The area of the required region ABCD
\[A = \int_{- 2}^4 \left( x_1 - x_2 \right) dy ...........\left(\text{where,} x_1 = \frac{y + 4}{2}\text{ and }x_2 = \frac{y^2}{4} \right)\]
\[ = \int_{- 2}^4 \left[ \left( \frac{y + 4}{2} \right) - \left( \frac{y^2}{4} \right) \right] d y\]
\[ = \left[ \frac{y^2}{4} + 2y - \frac{y^3}{12} \right]_{- 2}^4 \]
\[ = \left( \frac{4^2}{4} + 2 \times 4 - \frac{4^3}{12} \right) - \left[ \frac{\left( - 2 \right)^2}{4} + 2\left( - 2 \right) - \frac{\left( - 2 \right)^3}{12} \right]\]
\[ = \left( 4 + 8 - \frac{16}{3} \right) - \left[ 1 - 4 + \frac{2}{3} \right]\]
\[ = 12 - \frac{16}{3} + 3 - \frac{2}{3}\]
\[ = 15 - \frac{18}{3}\]
\[ = 15 - \frac{18}{3}\]
\[ = 15 - 6 = 9\text{ sq . units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.4 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.4 | Q 3.1 | पृष्ठ ६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×