Advertisements
Advertisements
प्रश्न
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
उत्तर
\[x^2 + y^2 = 4\] represents a circle with centre O(0,0) and radius 2 , cutting x axis at A(2,0) and A'(-2,0)
\[x = \sqrt{3} y\] represents a straight line passing through O(0,0)
Solving the two equations we get
\[x^2 + y^2 = 4\text{ and }x = \sqrt{3} y \]
\[ \Rightarrow \left( \sqrt{3}y \right)^2 + y^2 = 4\]
\[ \Rightarrow 4 y^2 = 4 \]
\[ \Rightarrow y = \pm 1\]
\[ \Rightarrow x = \pm \sqrt{3}\]
\[B\left( \sqrt{3} , 1 \right)\text{ and }B'\left( - \sqrt{3} , - 1 \right) \text{ are points of intersection of circle and straight line }\]
\[\text{ Shaded area }\left( OBQAO \right) = \text{ area }\left( OBPO \right) +\text{ area }\left( BAPB \right)\]
\[ = \frac{1}{\sqrt{3}} \int_0^\sqrt{3} x dx + \int_\sqrt{3}^2 \sqrt{4 - x^2} dx\]
\[ = \frac{1}{\sqrt{3}} \left[ \frac{x^2}{2} \right]_0^\sqrt{3} + \left[ \frac{1}{2}x\sqrt{4 - x^2} + \frac{4}{2} \sin^{- 1} \left( \frac{x}{2} \right) \right]_\sqrt{3}^2 \]
\[ = \frac{\sqrt{3}}{2} + 0 - \frac{\sqrt{3}}{2} + 2\left( \sin^{- 1} 1 - \sin^{- 1} \frac{\sqrt{3}}{2} \right)\]
\[ = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} + 2\left( \frac{\pi}{2} - \frac{\pi}{3} \right)\]
\[ = \frac{\pi}{3}\text{ sq units }\]
\[\text{ Area bound by the circle and straight line above x axis }= \frac{\pi}{3}\text{ sq units }\]
APPEARS IN
संबंधित प्रश्न
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.
Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.
Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.