मराठी

Find the Area Included Between the Parabolas Y2 = 4ax and X2 = 4by. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area included between the parabolas y2 = 4ax and x2 = 4by.

उत्तर


To find the point of intersection of the parabolas substitute \[y = \frac{x^2}{4b}\] in \[y^2 = 4ax\]  we get 
\[\frac{x^4}{16 b^2} = 4ax\]
\[ \Rightarrow x^4 - 64a b^2 x = 0\]
\[ \Rightarrow x\left( x^3 - 64a b^2 \right) = 0\]
\[ \Rightarrow x = 0\text{ and }x = 4\sqrt[3]{a b^2}\]
\[ \Rightarrow y = 0\text{ and }y = 4\sqrt[3]{a^2 b}\]
Therefore, the required area ABCD = \[\int_0^{4\sqrt[3]{a b^2}} \left( y_1 - y_2 \right) d x\] where  \[y_1 = 2\sqrt{ax}\] and  \[y_2 = \frac{x^2}{4b}\] 
Required area = \[\int_0^{4\sqrt[3]{a b^2}} \left( y_1 - y_2 \right) d x\]
\[ = \int_0^{4\sqrt[3]{a b^2}} \left( 2\sqrt{ax} - \frac{x^2}{4b} \right) d x\]
\[ = \left[ \frac{4\sqrt{a}}{3} x^\frac{3}{2} - \frac{x^3}{12b} \right]_0^{4\sqrt[3]{a b^2}} \]
\[ = \left[ \frac{4\sqrt{a}}{3} \left( 4\sqrt[3]{a b^2} \right)^\frac{3}{2} - \frac{\left( 4\sqrt[3]{a b^2} \right)^3}{12b} \right] - \left[ \frac{4\sqrt{a}}{3} \left( 0 \right)^\frac{3}{2} - \frac{\left( 0 \right)^3}{12a} \right]\]
\[ = \frac{16ab}{3}\text{ square units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 16 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).


Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.


Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y


Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1


Find the area of the region bounded by the curves y = x+ 2, xx = 0 and x = 3


Using integration finds the area of the region bounded by the triangle whose vertices are (–1, 0), (1, 3) and (3, 2).


Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Area lying between the curve y2 = 4x and y = 2x is

A. 2/3

B. 1/3

C. 1/4

D. 3/4


Find the area bounded by curves {(x, y) : y ≥ x2 and y = |x|}.


The area bounded by the y-axis, y = cos x and y = sin x when  0 <= x <= `pi/2`

(A) 2 ( 2 −1)

(B) `sqrt2 -1`

(C) `sqrt2 + 1`

D. `sqrt2`


Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).


Show that the rectangle of the maximum perimeter which can be inscribed in the circle of radius 10 cm is a square of side `10sqrt2` cm.


The area enclosed between the curves y = loge (x + e), x = log\[\left( \frac{1}{y} \right)\] and the x-axis is _______ .


The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .


Solve the following :

Find the area of the region lying between the parabolas :

y2 = 4x and x2 = 4y


The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units


The area of triangle ΔABC whose vertices are A(1, 1), B(2, 1) and C(3, 3) is ______ sq.units


Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant


Find the area of sector bounded by the circle x2 + y2 = 25, in the first quadrant−


Find the area enclosed between the X-axis and the curve y = sin x for values of x between 0 to 2π


Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y


Find the area enclosed between the circle x2 + y2 = 9, along X-axis and the line x = y, lying in the first quadrant


Find the area enclosed by the curve x = 3 cost, y = 2 sint.


Find the area of the region included between the parabola y = `(3x^2)/4` and the line 3x – 2y + 12 = 0.


Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1


Draw a rough sketch of the curve y = `sqrt(x - 1)` in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.


Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.


The value of a for which the area between the curves y2 = 4ax and x2 = 4ay is 1 sq.unit, is ______.


Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 at the point (–2, 3) be A. Then 8A is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×