मराठी

The Area Between X-axis and Curve Y = Cos X When 0 ≤ X ≤ 2 π is (A) 0 (B) 2 (C) 3 (D) 4 - Mathematics

Advertisements
Advertisements

प्रश्न

The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .

पर्याय

  • 0

  • 2

  • 3

  • 4

MCQ

उत्तर

` 4`

 


Required shaded area,
\[A = \int_0^\frac{\pi}{2} \cos x dx + \int_\frac{\pi}{2}^\frac{3\pi}{2} \left( - \cos x \right)dx + \int_{3\frac{\pi}{2}}^{2\pi} \cos x dx\]
\[ = \int_0^\frac{\pi}{2} \cos x dx - \int_\frac{\pi}{2}^\frac{3\pi}{2} \cos x dx + \int_{3\frac{\pi}{2}}^{2\pi} \cos x dx\]
\[ = \left[ \sin x \right]_0^\frac{\pi}{2} - \left[ \sin x \right]_\frac{\pi}{2}^\frac{3\pi}{2} + \left[ \sin x \right]_{3\frac{\pi}{2}}^{2\pi} \]
\[ = \left[ \sin x \right]_0^\frac{\pi}{2} - \left[ \sin x \right]_\frac{\pi}{2}^\frac{3\pi}{2} + \left[ \sin x \right]_{3\frac{\pi}{2}}^{2\pi} \]
\[ = \left( 1 - 0 \right) - \left( - 1 - 1 \right) + \left[ 0 - \left( - 1 \right) \right]\]
\[ = 1 + 2 + 1\]
\[ = 4\text{ sq units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - MCQ [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
MCQ | Q 18 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).


Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.


Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1


Find the area of the region bounded by the curves y = x+ 2, xx = 0 and x = 3


Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Area lying between the curve y2 = 4x and y = 2x is

A. 2/3

B. 1/3

C. 1/4

D. 3/4


Using the method of integration find the area bounded by the curve |x| + |y| = 1 .

[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].


Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

A. `4/3 (4pi - sqrt3)`

B. `4/3 (4pi + sqrt3)`

C. `4/3 (8pi - sqrt3)`

D.`4/3 (4pi + sqrt3)`


The area bounded by the y-axis, y = cos x and y = sin x when  0 <= x <= `pi/2`

(A) 2 ( 2 −1)

(B) `sqrt2 -1`

(C) `sqrt2 + 1`

D. `sqrt2`


The area enclosed between the curves y = loge (x + e), x = log\[\left( \frac{1}{y} \right)\] and the x-axis is _______ .


Area lying between the curves y2 = 4x and y = 2x is


Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant


Find the area of sector bounded by the circle x2 + y2 = 25, in the first quadrant−


Find the area of the ellipse `x^2/36 + y^2/64` = 1, using integration


Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y


Find the area of the region included between y = x2 + 5 and the line y = x + 7


Find the area enclosed between the circle x2 + y2 = 9, along X-axis and the line x = y, lying in the first quadrant


Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`


Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1


Draw a rough sketch of the curve y = `sqrt(x - 1)` in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.


Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.


Area lying between the curves `y^2 = 4x` and `y = 2x`


Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 at the point (–2, 3) be A. Then 8A is equal to ______.


Using Integration, find the area of triangle whose vertices are (– 1, 1), (0, 5) and (3, 2).


Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.


Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×