Advertisements
Advertisements
प्रश्न
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
पर्याय
1 : 2
2 : 1
\[\sqrt{3}\]
none of these
उत्तर
none of these
Area between the curve y = cos x and x-axis from x =0 and x =\[\frac{\pi}{3}\] is,
\[A_1 = \int_0^\frac{\pi}{3} y_1 d x .............\left[\text{Where, }y_1 = \cos\left( x \right) \right]\]
\[ = \int_0^\frac{\pi}{3} \cos\left( x \right) d x\]
\[ = \left[ \sin\left( x \right) \right]_0^\frac{\pi}{3} \]
\[ = \sin\left( \frac{\pi}{3} \right) - \sin\left( 0 \right)\]
\[ = \frac{\sqrt{3}}{2}\]

\[A_2 = \int_0^\frac{\pi}{4} y_2 d x - \int_\frac{\pi}{4}^\frac{\pi}{3} y_2 d x ............\left[\text{Where, }y_2 = \cos \left( 2x \right) \right]\]
\[ = \int_0^\frac{\pi}{4} \cos \left( 2x \right) d x - \int_\frac{\pi}{4}^\frac{\pi}{3} \cos \left( 2x \right) d x\]
\[ = \left[ \frac{1}{2}\sin \left( 2x \right) \right]_0^\frac{\pi}{4} - \left[ \frac{1}{2}\sin \left( 2x \right) \right]_\frac{\pi}{4}^\frac{\pi}{3} \]
\[ = \frac{1}{2}\left[ \sin \left( \frac{\pi}{2} \right) - \sin \left( 0 \right) \right] - \frac{1}{2}\left[ \sin \left( \frac{2\pi}{3} \right) - \sin \left( \frac{\pi}{2} \right) \right]\]
\[ = \frac{1}{2} - \frac{1}{2}\left[ \frac{\sqrt{3}}{2} - 1 \right]\]
\[ = \frac{1}{2} - \frac{\sqrt{3}}{4} + \frac{1}{2}\]
\[ = 1 - \frac{\sqrt{3}}{4}\]
\[ = \frac{4 - \sqrt{3}}{4}\]
Therefore the ratios will be
APPEARS IN
संबंधित प्रश्न
Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.
Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.
Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.