Advertisements
Advertisements
प्रश्न
If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .
पर्याय
1/2
1
-1
2
उत्तर
1
The area bounded by the curves \[y = 2^{kx}, x = 0\], and \[x = 2\] is given by \[\int_0^2 2^{kx} d x\]
It is given that \[\int_0^2 2^{kx} d x = \frac{3}{\log_e \left( 2 \right)}\]
\[\Rightarrow \frac{1}{k} \left[ \frac{2^{kx}}{\log_e \left( 2 \right)} \right]_0^2 = \frac{3}{\log_e \left( 2 \right)}\]
\[ \Rightarrow \frac{1}{k}\left[ \frac{2^{k\left( 2 \right)}}{\log_e \left( 2 \right)} - \frac{2^{k\left( 0 \right)}}{\log_e \left( 2 \right)} \right] = \frac{3}{\log_e \left( 2 \right)}\]
\[ \Rightarrow \frac{1}{k}\left( \frac{2^{2k}}{\log_e \left( 2 \right)} - \frac{1}{\log_e \left( 2 \right)} \right) = \frac{3}{\log_e \left( 2 \right)}\]
\[ \Rightarrow \frac{1}{k}\left( 2^{2k} - 1 \right) = 3\]
\[ \Rightarrow 2^{2k} - 1 = 3k\]
\[ \Rightarrow 2^{2k} - 3k - 1 = 0\]
\[ \Rightarrow k = 1\]
Clearly, k = 1 satisfies the equation. Hence, k = 1
APPEARS IN
संबंधित प्रश्न
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.
[Hint: y = x2 if x > 0 and y = –x2 if x < 0]
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).
Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.
The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.