English

If the Area Above the X-axis, Bounded by the Curves Y = 2kx and X = 0, and X = 2 is 3 Log E 2 , Then the Value of K is - Mathematics

Advertisements
Advertisements

Question

If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .

Options

  • 1/2

  • 1

  • -1

  • 2

MCQ

Solution

1

 

The area bounded by the curves \[y = 2^{kx}, x = 0\], and \[x = 2\] is given by \[\int_0^2 2^{kx} d x\]

It is given that \[\int_0^2 2^{kx} d x = \frac{3}{\log_e \left( 2 \right)}\]

\[\Rightarrow \frac{1}{k} \left[ \frac{2^{kx}}{\log_e \left( 2 \right)} \right]_0^2 = \frac{3}{\log_e \left( 2 \right)}\]

\[ \Rightarrow \frac{1}{k}\left[ \frac{2^{k\left( 2 \right)}}{\log_e \left( 2 \right)} - \frac{2^{k\left( 0 \right)}}{\log_e \left( 2 \right)} \right] = \frac{3}{\log_e \left( 2 \right)}\]

\[ \Rightarrow \frac{1}{k}\left( \frac{2^{2k}}{\log_e \left( 2 \right)} - \frac{1}{\log_e \left( 2 \right)} \right) = \frac{3}{\log_e \left( 2 \right)}\]

\[ \Rightarrow \frac{1}{k}\left( 2^{2k} - 1 \right) = 3\]

\[ \Rightarrow 2^{2k} - 1 = 3k\]

\[ \Rightarrow 2^{2k} - 3k - 1 = 0\]

\[ \Rightarrow k = 1\]

Clearly, k = 1 satisfies the equation. Hence, k = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - MCQ [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
MCQ | Q 1 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


The curve x = t2 + t + 1,y = t2 – t + 1 represents


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×