Advertisements
Advertisements
Question
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Solution
\[y = \sqrt{6x + 4}\text{ represents a parabola, with vertex }V( - \frac{2}{3}, 0)\text{ and symmetrical about }x -\text{ axis }\]
\[x = 0\text{ is the }y -\text{ axis } .\text{ The curve cuts it at }A(0, 2 )\text{ and }A'(0, - 2)\]
\[x = \text{ 2 is a line parallel to } y - \text{ axis, cutting the } x - \text{ axis at }C(2, 0)\]
\[\text{ The enclosed area of the curve between }x = 0 \text{ and }x = 2\text{ and above }x - \text{ axis }=\text{ area OABC }\]
\[\text{ Consider, a vertical strip of length }= \left| y \right|\text{ and width }= dx \]
\[\text{ Area of approximating rectangle }= \left| y \right| dx\]
\[\text{ The approximating rectangle moves from }x = 0\text{ to } x = 2 \]
\[ \Rightarrow\text{ area OABC }= \int_0^2 \left| y \right| dx\]
\[ \Rightarrow A = \int_0^2 y dx ..................\left[ As, y > 0 , \left| y \right| = y \right]\]
\[ \Rightarrow A = \int_0^2 \sqrt{6x + 4} dx \]
\[ \Rightarrow A = \int_0^2 \left( 6x + 4 \right)^\frac{1}{2} dx\]
\[ \Rightarrow A = \frac{1}{6} \left[ \frac{\left( 6x + 4 \right)^\frac{3}{2}}{\frac{3}{2}} \right]_0^2 \]
\[ \Rightarrow A = \frac{2}{18}\left[ {16}^{{}^\frac{3}{2}} - 4^\frac{3}{2} \right]\]
\[ \Rightarrow A = \frac{2}{18}\left[ 4^3 - 2^3 \right]\]
\[ \Rightarrow A = \frac{2}{18}\left[ 64 - 8 \right] = \frac{2}{18} \times 56 = \frac{56}{9} \text{ sq . units }\]
\[ \therefore\text{ Enclosed area }= \frac{56}{9} \text{ sq . units }\]
APPEARS IN
RELATED QUESTIONS
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.
Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.
Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.
The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.