Advertisements
Advertisements
Question
Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).
Solution
A(4, 1), B(6, 6) and C(8, 4) are three given points.
Equation of AB is given by
\[y - 1 = \frac{6 - 1}{6 - 4}\left( x - 4 \right)\]
\[ \Rightarrow y - 1 = \frac{5}{2}\left( x - 4 \right)\]
\[ \Rightarrow y = \frac{5}{2}x - 9 . . . . . \left( 1 \right)\]
Equation of BC is given by
\[y - 6 = \frac{4 - 6}{8 - 6} \left( x - 6 \right)\]
\[ \Rightarrow y - 6 = - \left( x - 6 \right)\]
\[ \Rightarrow y = - x + 12 . . . . . \left( 2 \right)\]
Equation of CA is given by
\[ \Rightarrow y - 4 = \frac{1 - 4}{4 - 8}\left( x - 8 \right)\]
\[ \Rightarrow y - 4 = \frac{3}{4}\left( x - 8 \right)\]
\[ \Rightarrow y = \frac{3}{4}x - 2 . . . . . \left( 3 \right)\]
Required area of shaded region ABC
\[\text{ Shaded area }\left( ABC \right) = \text{ area }\left( ABD \right) \hspace{0.167em} + area\left( DBC \right)\]
\[\text{ Consider a point }P\left( x, y_2 \right)\text{ on AB and }Q\left( x, y_1 \right)\text{ on AD }\]
\[ \Rightarrow\text{ for a vertical strip of length }= \left| y_2 - y_1 \right|\text{ and width }= dx, \text{ area }= \left| y_2 - y_1 \right|dx, \]
\[\text{ The approximating rectangle moves from } x = 4\text{ to }x = 6\]
\[\text{ Hence area }\left( ABD \right) = \int_4^6 \left| y_2 - y_1 \right|dx\]
\[ = \int_4^6 \left[ \left( \frac{5}{2}x - 9 \right) - \left( \frac{3}{4}x - 2 \right) \right]dx\]
\[ = \int_4^6 \left( \frac{7}{4}x - 7 \right)dx\]
\[ = \left[ \frac{7}{4} \times \frac{x^2}{2} - 7x \right]_4^6 \]
\[ = \frac{7}{8}\left( 36 - 16 \right) - 7\left( 6 - 4 \right)\]
\[ = \frac{7}{8} \times 20 - 14\]
\[ = \frac{35}{2} - 14\]
\[ = \frac{35 - 28}{2} = \frac{7}{2}\text{ sq units }\]
\[\text{ Consider a point S }\left( x, y_4 \right)\text{ on BC and R }\left( x, y_3 \right)\text{ on DC }\]
\[\text{ For a vertical strip of length }= \left| y_4 - y_3 \right|\text{ and width }= dx, \text{ area }= \left| y_4 - y_3 \right|dx, \]
\[\text{ The approximating rectangle moves from }x = 6\text{ to } x = 8\]
\[ \Rightarrow \text{ area }\left( BDC \right) = \int_6^8 \left[ \left( - x + 12 \right) - \left( \frac{3}{4}x - 2 \right) \right] dx\]
\[ = \int_6^8 \left( - \frac{7}{4}x + 14 \right)dx\]
\[ = \left[ - \frac{7}{4} \times \frac{x^2}{2} + 14x \right]_6^8 \]
\[ = \left[ - \frac{7 x^2}{8} + 14x \right]_6^8 \]
\[ = - \frac{7}{8}\left( 64 - 36 \right) + 14\left( 8 - 6 \right)\]
\[ = - \frac{7}{8} \times 28 + 28\]
\[ = \frac{28}{8} = \frac{7}{2}\]
\[\text{ Thus required area }\left( ABC \right) = \frac{7}{2} + \frac{7}{2} = 7 \text{ sq . units }\]
APPEARS IN
RELATED QUESTIONS
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.
Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).
Find the area of the curve y = sin x between 0 and π.
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
Find the area of the region included between y2 = 9x and y = x
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.