Advertisements
Advertisements
Question
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Solution
We are given the equations of curve y = `sqrt(x)` and line y = x.
Solving y = `sqrt(x)`
⇒ y2 = x and y = x,
We get x2 = x
⇒ x2 – x = 0
⇒ x(x – 1) = 0
∴ x = 0, 1
Required area of the shaded region
= `int_0^1 sqrt(x) "d"x - int_0^1 x "d"x`
= `2/3 [x^(3/2)]_0^1 - 1/2 [x^2]_0^1`
= `2/3[(1)^(3/2) - 0] - 1/2 [(1)^2 - 0]`
= `2/3 - 1/2`
⇒ `(4 - 3)/6`
⇒ `1/6` sq.units
Hence, the required area = `1/6` sq.units
APPEARS IN
RELATED QUESTIONS
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Find the area lying above the x-axis and under the parabola y = 4x − x2.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Find the area of the region bounded by y = | x − 1 | and y = 1.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.
Find the area of the curve y = sin x between 0 and π.
The area enclosed by the circle x2 + y2 = 2 is equal to ______.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0 ≤ x - (<pi)/2` is
Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.