English

Find the Area Bounded by the Parabola Y2 = 4x and the Line Y = 2x − 4. (I) by Using Horizontal Strips (Ii) by Using Vertical Strips. - Mathematics

Advertisements
Advertisements

Question

Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.

Sum

Solution


To find the points of intersection between the parabola and the line let us substitute y = 2x − 4 in y2 = 4x.
\[\left( 2x - 4 \right)^2 = 4x\]
\[ \Rightarrow 4 x^2 + 16 - 16x = 4x\]
\[ \Rightarrow 4 x^2 - 20x + 16 = 0\]
\[ \Rightarrow x^2 - 5x + 4 = 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 4 \right) = 0\]
\[ \Rightarrow x = 1, 4\]
\[\Rightarrow y = - 2, 4\]
Therefore, the points of intersection are C(1, −2) and A(4, 4).
Using Vertical Strips:-
The area of the required region ABCD

\[A = \int_0^4 y_2 d x - \int_1^4 y_1 d x ..........\left( \text{ Where,} y_2 = 2\sqrt{x}\text{ and }y_1 = 2x - 4 \right)\]
\[= \int_0^4 2\sqrt{x} d x - \int_1^4 \left( 2x - 4 \right) d x\]
\[ = \left[ \frac{4}{3} x^\frac{3}{2} \right]_0^4 - \left[ x^2 - 4x \right]_1^4 \]
\[ = \left[ \left\{ \frac{4}{3} \left( 4 \right)^\frac{3}{2} \right\} - \left\{ \frac{4}{3} \left( 0 \right)^\frac{3}{2} \right\} \right] - \left[ \left( 4^2 - 4 \times 4 \right) - \left( 1^2 - 4 \times 1 \right) \right]\]
\[ = \left[ \frac{32}{3} - 0 \right] - \left[ 0 - \left( 1 - 4 \right) \right]\]
\[ = \frac{32}{3} - 3\]
\[ = \frac{23}{3}\text{ square units }\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.4 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.4 | Q 3.2 | Page 61

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×