English

Draw a rough sketch of the graph of the function y = 2 √ 1 − x 2 , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis. - Mathematics

Advertisements
Advertisements

Question

Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.

Sum

Solution

We have, 

\[y = 2\sqrt{1 - x^2}\]

\[ \Rightarrow \frac{y}{2} = \sqrt{1 - x^2}\]

\[ \Rightarrow \frac{y^2}{4} = 1 - x^2 \]

\[ \Rightarrow x^2 + \frac{y^2}{4} = 1\]

\[ \Rightarrow \frac{x^2}{1} + \frac{y^2}{4} = 1\]

\[\text{ Since in the given equation } \frac{x^2}{1} + \frac{y^2}{4} = 1,\text{ all the powers of both }x\text{ and }y\text{ are even, the curve is symmetrical about both the axes }. \]

\[ \therefore\text{ Required area = area enclosed by ellipse and }x - \text{ axis in first quadrant }\]

\[(1, 0 ), ( - 1, 0) \text{ are the points of intersection of curve and }x - \text{ axis }\]

\[(0, 2), (0, - 2) \text{ are the points of intersection of curve and }y - \text{ axis }\]

\[\text{ Slicing the area in the first quadrant into vertical stripes of height }= \left| y \right|\text{ and width }= dx\]

\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]

\[\text{ Approximating rectangle can move between }x = 0\text{ and }x = 1 \]

\[\text{ A = Area of enclosed curve above }x -\text{ axis }= \int_0^1 \left| y \right| dx\]

\[ \Rightarrow A = \int_0^1 2\sqrt{1 - x^2} d x\]

\[ = 2 \int_0^1 \sqrt{1 - x^2} d x\]

\[ = 2 \left[ \frac{1}{2}x\sqrt{1 - x^2} + \frac{1}{2} \sin^{- 1} x \right]_0^1 \]

\[ = 2\left\{ \frac{1}{2} \sin^{- 1} 1 \right\}\]

\[ = 2\left\{ \frac{1}{2}\left( \frac{\pi}{2} - 0 \right) \right\}\]

\[ \Rightarrow A = \frac{\pi}{2}\text{ sq . units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.1 | Q 12 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


The curve x = t2 + t + 1,y = t2 – t + 1 represents


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×