English

Find the Area of the Region Bounded by the Curve Xy − 3x − 2y − 10 = 0, X-axis and the Lines X = 3, X = 4. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.

Solution

We have, 
\[xy - 3x - 2y - 10 = 0\]
\[ \Rightarrow xy - 2y = 3x + 10\]
\[ \Rightarrow y\left( x - 2 \right) = 3x + 10\]
\[ \Rightarrow y = \frac{3x + 10}{x - 2}\]
Let A represent the required area:
\[\Rightarrow A = \int_3^4 \left| y \right| d x\]
\[ = \int_3^4 \frac{3x + 10}{x - 2} d x\]
\[ = \int_3^4 \frac{3x - 6 + 16}{x - 2} d x\]
\[ = \int_3^4 \left( 3 + \frac{16}{x - 2} \right) d x\]
\[ = \left[ 3x + 16 \log \left| x - 2 \right| \right]_3^4 \]
\[ = \left[ 12 + 16 \log \left| 2 \right| - 9 - 16 \log \left| 1 \right| \right]\]
\[ = 3 + 16 \log 2\text{ sq . units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.1 | Q 20 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×