English

Find the Area of the Region Bounded by the Parabola Y2 = 2x + 1 and the Line X − Y − 1 = 0. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.

Sum

Solution

We have,
\[y^2 = 2x + 1\] and \[x - y - 1 = 0\]
To find the intersecting points of the curves ,we solve both the equations.
\[y^2 = 2\left( 1 + y \right) + 1\]
\[ \Rightarrow y^2 - 2 - 2y - 1 = 0\]
\[ \Rightarrow y^2 - 2y - 3 = 0\]
\[ \Rightarrow \left( y - 3 \right)\left( y + 1 \right) = 0\]
\[ \Rightarrow y = 3\text{ or }y = - 1\]
\[ \therefore x = 4\text{ or }0\]
\[\text{ Consider a horizantal strip of length }\left| x_2 - x_1 \right|\text{ and width dy where }P\left( x_2 , y \right)\text{ lies on straight line and Q }\left( x_1 , y \right)\text{ lies on the parabola . }\]
\[\text{ Area of approximating rectangle }= \left| x_2 - x_1 \right| dy , \text{ and it moves from }y = - 1\text{ to }y = 3\]
\[\text{ Required area = area }\left( OADO \right) = \int_{- 1}^3 \left| x_2 - x_1 \right| dy\]
\[ = \int_{- 1}^3 \left| x_2 - x_1 \right| dy ...........\left\{ \because \left| x_2 - x_1 \right| = x_2 - x_1 as x_2 > x_1 \right\}\]
\[ = \int_{- 1}^3 \left\{ \left( 1 + y \right) - \frac{1}{2}\left( y^2 - 1 \right) \right\}dy\]
\[ = \int_{- 1}^3 \left\{ 1 + y - \frac{1}{2} y^2 + \frac{1}{2} \right\}dy\]
\[ = \int_{- 1}^3 \left\{ \frac{3}{2} + y - \frac{1}{2} y^2 \right\}dy\]
\[ = \left[ \frac{3}{2}y + \frac{y^2}{2} - \frac{1}{6} y^3 \right]_{- 1}^3 \]
\[ = \left[ \frac{9}{2} + \frac{9}{2} - \frac{27}{6} \right] - \left[ \frac{- 3}{2} + \frac{1}{2} + \frac{1}{6} \right]\]
\[ = \left[ \frac{9}{2} \right] + \left[ \frac{5}{6} \right]\]
\[ = \frac{16}{3}\text{ sq units }\]
\[\text{ Area enclosed by the line and given parabola }= \frac{16}{3}\text{ sq units }\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 52]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 26 | Page 52

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the area of the curve y = sin x between 0 and π.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×