English

Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py

Sum

Solution


We are given that: x2 = 2py   ......(i)

And y2 = 2px    ......(ii)

From equation (i)

We get y = `x^2/(2"p")`

Putting the value of y in equation (ii)

We have `(x^2/(2"p"))` = 2px

⇒ `x^4/(4"p"^2)` = 2px

⇒ x4 = 8p3x

⇒ x4 – 8p3x = 0

⇒ x(x3 – 8p3) = 0

∴ x = 0, 2p

Required area = Area of the region (OCBA – ODBA)

= `int_0^(2"p") sqrt(2"p"x)  "d"x - int_0^(2"p") x^2/(2"p")  "d"x`

= `sqrt(2"p") * 2/3 [x^(3/2)]_0^(2"p") - 1/(2"p") * 1/3 [x^3]_0^(2"p")`

= `(2sqrt(2))/3 sqrt("p") [(2"p")^(3/2) - 0] - 1/(6"p") [(2"p")^3 - 0]`

= `(2sqrt(2))/3 sqrt("p") * 2sqrt(2) "p"^(3/2) - 1/(6"p") * 8"p"^3`

= `8/3 * "p"^2 - 8/6 "p"^2`

= `8/6 "p"^2`

= `4/3 "p"^2` sq.units

Hence, the required area = `4/3 "p"^2` sq.units

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application Of Integrals - Exercise [Page 176]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 8 Application Of Integrals
Exercise | Q 2 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×