Advertisements
Advertisements
Question
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
Solution
Equations of the curves are given by x2 + y2 = 4x ......(i)
And y2 = 2x ......(ii)
⇒ x2 – 4x + y2 = 0
⇒ x2 – 4x + 4 – 4 + y2 = 0
⇒ (x – 2)2 + y2 = 4
Clearly it is the equation of a circle having its centre (2, 0) and radius 2.
Solving x2 + y2 = 4x and y2 = 2x
x2 + 2x = 4x
⇒ x2 + 2x – 4x = 0
⇒ x2 – 2x = 0
⇒ x(x – 2) = 0
∴ x = 0, 2
Area of the required region
= `2[int_0^2 sqrt(4 - (x - 2)^2) "d"x - int_0^2 sqrt(2x) "d"x]`
∴ Parabola and circle both are symmetrical about x-axis.
= `2[(x - 2)/2 sqrt(4 - (x - 2)^2) + 4/2 sin^-1 (x - 2)/2]_0^2 - 2*sqrt(2)* 2/3 [x^(3/2)]_0^2`
= `2[(0 + 0) - (0 + 2 sin^-1 (-1)] - (4sqrt(2))/3 [2^(3/2) - 0]`
= `-2 xx 2 * (- pi/2) - (4sqrt(2))/3 * 2sqrt(2)`
= `2pi - 16/3`
= `2(pi - 8/3)` sq.units
Hence, the required area = `2(pi - 8/3)` sq.units
APPEARS IN
RELATED QUESTIONS
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.
Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Find the area bounded by the curves x = y2 and x = 3 − 2y2.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area of the region included between y2 = 9x and y = x
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.