English

Using Integration, Find the Area of the Region Bounded by the Line Y − 1 = X, the X − Axis and the Ordinates X = −2 and X = 3. - Mathematics

Advertisements
Advertisements

Question

Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.

Sum

Solution

\[\because y - 1 = x\text{ is a straight line cutting x - axis at D( - 1, 0) and y - axis at A( 0, 1) }\]
\[\text{ And, }x = - 2\text{ and }x = 3 \text{ are straight lines parallel to y - axis }\]
\[\text{ Also, since }\left| y \right| = - \left( 1 + x \right),\text{ for } x \leq - 1\]
\[\text{ And }\left| y \right| = \left( 1 + x \right), x > - 1\]
\[ \therefore\text{ Area of region bound by line }y - 1 = x , x \text{ axis and the ordinates } x = - 2\text{ and }x = 3\text{ is }\]
\[\text{ Area A = area FED + area DOA + area OABC }\]
\[ \Rightarrow A = \int_{- 2}^3 \left| y \right| dx\]
\[ \Rightarrow A = \int_{- 2}^{- 1} \left| y \right| dx + \int_{- 1}^0 \left| y \right| dx + \int_0^3 \left| y \right| dx\]
\[ \Rightarrow A = \int_{- 2}^{- 1} - \left( 1 + x \right) dx + \int_{- 1}^0 \left( 1 + x \right) dx + \int_0^3 \left( 1 + x \right) dx\]
\[ \Rightarrow A = - \left[ x + \frac{x^2}{2} \right]_{- 2}^{- 1} + \left[ x + \frac{x^2}{2} \right]_{- 1}^0 + \left[ x + \frac{x^2}{2} \right]_0^3 \]
\[ \Rightarrow A = \left[ 1 - \frac{1}{2} - 2 + \frac{4}{2} \right] + \left[ 0 + 1 - \frac{1}{2} \right] + \left[ 3 + \frac{9}{2} \right]\]
\[ \Rightarrow A = - 1 + \frac{3}{2} + 1 - \frac{1}{2} + 3 + \frac{9}{2} = 3 + \frac{3 - 1 + 9}{2} = 3 + \frac{11}{2} = \frac{17}{2}\text{ sq . units }\]
\[ \therefore \text{Area of the bound region }= \frac{17}{2}\text{ sq . units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.1 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.1 | Q 2 | Page 14

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


Find the area of the region included between y2 = 9x and y = x


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×