Advertisements
Advertisements
Question
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
Options
`32/3`
`256/3`
`64/3`
`128/3`
Solution
The area of the region bounded by the curve y = x2 and the line y = 16 `256/3`.
Explanation:
Since area = `2 int_0^16 sqrt(y) "d"y`
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.
Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\] are in the ratio 2 : 3.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Find the area bounded by the curves x = y2 and x = 3 − 2y2.
Find the area of the region bounded by y = | x − 1 | and y = 1.
Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.