English

Find the Area of the Region in the First Quadrant Bounded by the Parabola Y = 4x2 and the Lines X = 0, Y = 1 and Y = 4. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.

Sum

Solution

\[y = 4 x^2\text{ represents a parabola , openeing upwards, symmetrical about + ve } y - \text{ axis and having vertex at O}(0, 0)\]
\[y = 1\text{ is a line parallel to }x - \text{ axis , cutting parabola at }\left( - \frac{1}{2}, 1 \right) and \left( \frac{1}{2}, 1 \right)\]
\[y = 4\text{ is a line parallel to } x \text{ axis , cutting parabola at }\left( - 1, 1 \right)\text{ and }\left( 1, 1 \right)\]
\[x = 0\text{ is the }y - \text{ axis } \]
\[\text{ Consider a horizontal strip of length }= \left| x \right| \text{ and width }= dy\text{ in the first quadrant }\]
\[\text{ Area of approximating rectangle }= \left| x \right| dy\]
\[\text{ Approximating rectangle moves from }y = 1 \text{ to }y = 4 \]
\[\text{ Area of the curve in the first quadrant enclosed by }y = 1\text{ and }y = 4\text{ is the required area of the shaded region }\]
\[ \therefore\text{ Area of the shaded region }= \int_0^4 \left| x \right| dy\]
\[ \Rightarrow A = \int_1^4 x dy ...............\left[ As, x > 0, \left| x \right| = x \right]\]
\[ \Rightarrow A = \int_1^4 \sqrt{\frac{y}{4}} dy \]
\[ \Rightarrow A = \frac{1}{2} \int_1^4 \sqrt{y} dy \]
\[ \Rightarrow A = \frac{1}{2} \left[ \frac{y^\frac{3}{2}}{\frac{3}{2}} \right]_1^4 \]
\[ \Rightarrow A = \frac{1}{2} \times \frac{2}{3}\left[ 4^\frac{3}{2} - 1^\frac{3}{2} \right]\]
\[ \Rightarrow A = \frac{1}{3}\left[ 8 - 1 \right]\]
\[ \Rightarrow A = \frac{7}{3}\text{ sq . units }\]
\[ \therefore\text{ The area enclosed by parabola in the first quadrant and }y = 1, y = 4\text{ is } \frac{7}{3}\text{ sq . units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.2 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.2 | Q 1 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Find the area bounded by the curve y = sin x between x = 0 and x = 2π.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×