English

Prove that the Area Common to the Two Parabolas Y = 2x2 and Y = X2 + 4 is 32 3 Sq. Units. - Mathematics

Advertisements
Advertisements

Question

Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.

Sum

Solution

We have, two parabolas y = 2x2 and y = x2 + 4
To find point of intersection , solve the two equations 
\[2 x^2 = x^2 + 4\]
\[ \Rightarrow x^2 = 4\]
\[ \Rightarrow x = \pm 2\]
\[ \therefore y = 4\]
\[\text{ Thus A }(2, 4)\text{ and A'}( - 2 , 4 )\text{ are points of intersection of the two parabolas }\]
\[\text{ Shaded area }= 2 \times\text{ area }\left(\text{ OCAO }\right)\]
\[\text{ Consider a vertical stip of length }\left| y_2 - y_1 \right| \text{ and width }dx \]
\[\text{ Area of approximating rectangle }= \left| y_2 - y_1 \right| dx \]
\[\text{ The approximating rectangle moves from }x = 0\text{ to } x = 2\]
\[\text{ Area }\left( OCAO \right) = \int_0^2 \left| y_2 - y_1 \right|dx = \int_0^2 \left( y_2 - y_1 \right)dx .............\left\{ \because \left| y_2 - y_1 \right| = y_2 - y_1\text{ as }y_2 > y_1 \right\}\]
\[ = \int_0^2 \left( x^2 + 4 - 2 x^2 \right)dx\]
\[ = \int_0^2 \left( 4 - x^2 \right)dx\]
\[ = \left[ \left( 4x - \frac{x^3}{3} \right) \right]_0^2 \]
\[ = 8 - \frac{8}{2}\]
\[ = \frac{16}{3}\text{ sq units }\]
\[\text{ Shaded area }= 2 \times\text{ area }\left( OCAO \right) = 2 \times \frac{16}{3} = \frac{32}{3}\text{ sq units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 52]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 22 | Page 52

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area bounded by the curve y = sin x between x = 0 and x = 2π.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area of the region bounded by y = `sqrt(x)` and y = x.


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×