English

Using Integration, Find the Area of the Region Bounded by the Following Curves, After Making a Rough Sketch: Y = 1 + | X + 1 |, X = −2, X = 3, Y = 0. - Mathematics

Advertisements
Advertisements

Question

Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.

Sum

Solution

We have,
y = 1 + | x + 1 | intersect x = − 2 and at ( −2, 2) and x = 3 at (3, 5).
And y = 0 is the x-axis.
The shaded region is our required region whose area has to be found
\[y = 1 + \left| x + 1 \right|\]
\[ = \begin{cases}1 - \left( x + 1 \right) &x < - 1\\1 + \left( x + 1 \right)& x \geq 1\end{cases}\]
\[ = \begin{cases} - x x& < - 1\\x + 2& x \geq 1\end{cases}\]
Let the required area be A. Since limits on x are given, we use horizontal strips to find the area:
\[A = \int_{- 2}^3 \left| y \right| d x\]
\[ = \int_{- 2}^{- 1} \left| y \right| d x + \int_{- 1}^3 \left| y \right| d x\]
\[ = \int_{- 2}^{- 1} - x d x + \int_{- 1}^3 \left( x + 2 \right) d x\]
\[ = - \left[ \frac{x^2}{2} \right]_{- 2}^{- 1} + \left[ \frac{x^2}{2} + 2x \right]_{- 1}^3 \]
\[ = - \left[ \frac{1}{2} - \frac{4}{2} \right] + \left[ \frac{9}{2} + 6 - \frac{1}{2} + 2 \right]\]
\[ = \frac{3}{2} + \left[ 8 + \frac{8}{2} \right]\]
\[ = \frac{3}{2} + \left[ 8 + 4 \right]\]
\[ = \frac{27}{2}\text{ sq . units }\]               

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.1 | Q 16 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of the region included between y2 = 9x and y = x


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×