English

The Area Bounded by the Parabola Y2 = 4ax, Latusrectum and X-axis is - Mathematics

Advertisements
Advertisements

Question

The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .

Options

  • 0

  • \[\frac{4}{3} a^2\]

  • \[\frac{2}{3} a^2\]

  • \[\frac{a^2}{3}\]

MCQ

Solution

\[\frac{4}{3} a^2\]
 

Clearly, the latusrectum passes x-axis through the point D(a, 0).
Therefore, the required area ABCD,
\[A = \int_0^a y d x ...........\left(\text{Where, } y = 2\sqrt{ax} \right)\]
\[ = \int_0^1 2\sqrt{ax} d x\]
\[ = \left[ \frac{4\sqrt{a}}{3} \left( x \right)^\frac{3}{2} \right]_0^a \]
\[ = \left[ \frac{4\sqrt{a}}{3} \left( a \right)^\frac{3}{2} \right] - \left[ \frac{4\sqrt{a}}{3} \left( 0 \right)^\frac{3}{2} \right]\]
\[ = \frac{4}{3} a^2\text{ square units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - MCQ [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
MCQ | Q 13 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Find the area of the region bounded by y = | x − 1 | and y = 1.


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


The area bounded by the curve y = 4x − x2 and the x-axis is __________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


The curve x = t2 + t + 1,y = t2 – t + 1 represents


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×