English

Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration. - Mathematics

Advertisements
Advertisements

Question

Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.

Sum

Solution

The coordinates of the vertices of ΔABC are given by A(–1, 1), B(0, 5) and C(3, 2).

Equation of AB is y – 1 = `(5 - 1)/(0 + 1) (x + 1)`

⇒ y – 1 = 4x + 4

∴ y = 4x + 4 + 1

⇒ y = 4x + 5  .....(i)

Equation of BC is y – 5 = `(2 - 5)/(3 - 0) (x - 0)`

⇒ y – 5 = –x

∴ y = 5 – x  ......(ii)

Equation of CA is y – 1 = `(2 - 1)/(3 + 1) (x + 1)`

⇒ y – 1 = `1/4x + 1/4`

⇒ y = `1/4x + 1/4 + 1`

∴ y = `1/4x + 5/4`

= `1/4 (5 + x)`

Area of ΔABC = `int_(-1)^0 (4x + 5) "d"x + int_0^3 (5 - x) "d"x - int_(-1)^3 1/4(5 + x)"d"x`

= `4/2 [x^2]_-1^0 + 5[x]_-1^0 + 5[x]_0^3 - 1/2 [x^2]_0^3 - 1/4 [5x + x^2/2]_-1^3`

= `2(0 - 1) + 5(0 + 1) + 5(3 - 0) - 1/2 (9 - 0) - 1/4[(15 + 9/2) - (-5 + 1/2)]`

= `-2 + 5 + 15 - 9/2 - 1/4 (39/2 + 9/2)`

= `18 - 9/2 - 1/4 xx 48/2`

= `18 - 9/2 - 6`

= `12 - 9/2`

= `15/2` sq.units

Hence, the required area = `15/2` sq.units

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application Of Integrals - Exercise [Page 177]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 8 Application Of Integrals
Exercise | Q 18 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Find the area of the curve y = sin x between 0 and π.


Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×