English

Find the Area of the Region Bounded by Y = √ X and Y = X. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.

Sum

Solution

\[y = \sqrt{x} . . . \left( 1 \right)\text{ is a parabola opening side ways, with vertex at O(0, 0) and + ve }x - \text{ axis as axis of symmetry }\]
\[x = y . . . \left( 2 \right)\text{ is a straight line passsing through O(0, 0) and at angle }{45}^o\text{ with the }x - \text{ axis }\]
\[\text{ Solving }\left( 1 \right)\text{ and }\left( 2 \right) \]
\[ y^2 = x = y \]
\[ \Rightarrow y^2 = y \]
\[ \Rightarrow y(y - 1) = 0 \]
\[ \Rightarrow y = 0\text{ or }y = 1\text{ and }x = 0\text{ or }x = 1\]
\[\text{ Thus, the line intersects the parabola at O(0, 0 ) and A(1, 1) }\]
\[\text{ Consider a approximating rectangle of length }= \left| y_2 - y_1 \right|\text{ and width }= dx \]
\[\text{ Area of approximating rectangle }= \left| y_2 - y_1 \right| dx\]
\[\text{ Approximating rectangle moves from }x = 0\text{ to }x = 1 \]
\[ \therefore\text{ Area of the shaded region }= \int_0^1 \left| y_2 - y_1 \right| dx = \int_0^1 \left( y_2 - y_1 \right) dx ...............\left[ As, y_2 > y_1 , \left| y_2 - y_1 \right| = y_2 - y_1 \right] \]
\[ \Rightarrow A = \int_0^1 \left( \sqrt{x} - x \right) dx \]
\[ \Rightarrow A = \left[ \frac{x^\frac{3}{2}}{\frac{3}{2}} - \frac{x^2}{2} \right]_0^1 \]
\[ \Rightarrow A = \left[ \frac{1^\frac{3}{2}}{\frac{3}{2}} - \frac{1^2}{2} - 0 \right]\]
\[ \Rightarrow A = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}\text{ sq . units }\]
\[ \therefore\text{ Area bound by the parabola and straight line }= \frac{1}{6}\text{ sq . units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 3 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


The curve x = t2 + t + 1,y = t2 – t + 1 represents


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×