English

The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______. [Hint: y = x2 if x > 0 and y = –x2 if x < 0] - Mathematics

Advertisements
Advertisements

Question

The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]

Options

  • 0

  • `1/3`

  • `2/3`

  • `4/3`

MCQ
Fill in the Blanks

Solution

The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by `underline(2/3)`. 

Explanation:

When x > 0, |x| = x

∴ Equation of the curve  y = x2

When x < 0, |x| = -x

Equation of the curve y = -x2

Curve y = x |x|, x ≥ -1, x ≤ 0

The area bounded by x-axis = Area of ​​region APO + Area of ​​region OBQ

`= |int_(-1)^0 - x^2 dx| + int_0^1 x^2 dx`

`= |[-x^3/3]|_-1^0 + [x^3/3]_0^1`

`= |-0 - 1/3| + [1/3 - 0]`

`= 1/3 + 1/3`

`= 2/3` square unit

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application of Integrals - Exercise 8.3 [Page 376]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 8 Application of Integrals
Exercise 8.3 | Q 17 | Page 376

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]  and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.

 

 


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×