Advertisements
Advertisements
Question
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.
Options
0
1
2
3
Solution
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to 2.
Explanation:
Given `("dy")/("d"x) = 2(x + 1)`
⇒ dy = (2x + 2)dx
Now, Integrating above,
`int"dy" = int(2x + 2)"d"x`
⇒ y = `(x^2/2)2 + 2x + "c"`
⇒ y = x2 + 2x + c
Area bounded by y = y(x) and x-axis is `(4sqrt(8))/3`
Using equation (i), at x-axis (y = 0)
x2 + 2x + c = 0
x = `(-2 +- sqrt(4 - 4"c"))/2`
⇒ x = `-1 +- sqrt(1 - "c")`
A = `2int_(-1)^(-1 + sqrt(1 - "c")){-(x + 1)^2 - "c" + 1}"d"x = (4sqrt(8))/3`
⇒ `[(-(x + 1)^3)/3 - "c"x + x]_(-1)^(-1 + sqrt(1 - "c")) = (2sqrt(8))/3`
⇒ `(-(sqrt(1 - "c"))^3)/3 - "c"(-1 + sqrt(1 - "c")) + (-1 + sqrt(1 - "c")) - "c" + 1 = (2sqrt(8))/3`
⇒ `-(sqrt(1 - "c"))^3 + 3"c" - 3"c"sqrt(1 - "c") -3 + 3sqrt(1 - "c") - 3"c" + 3 = 2sqrt(8)`
⇒ `-(sqrt(1 - "c"))^3 - 3"c"sqrt(1 - "c") + 3sqrt(1 - "c") = 2sqrt(8)`
⇒ c = –1
Now using Equation (i)
y = y(x) = x2 + 2x – 1
⇒ y(1) = 2