मराठी

Let the curve y = y(x) be the solution of the differential equation, dydx=2(x+1). If the numerical value of area bounded by the curve y = y(x) and x-axis is 483 -

Advertisements
Advertisements

प्रश्न

Let the curve y = y(x) be the solution of the differential equation, dydx=2(x+1). If the numerical value of area bounded by the curve y = y(x) and x-axis is 483, then the value of y(1) is equal to ______.

पर्याय

  • 0

  • 1

  • 2

  • 3

MCQ
रिकाम्या जागा भरा

उत्तर

Let the curve y = y(x) be the solution of the differential equation, dydx=2(x+1). If the numerical value of area bounded by the curve y = y(x) and x-axis is 483, then the value of y(1) is equal to 2.

Explanation:

Given dydx=2(x+1)

⇒ dy = (2x + 2)dx

Now, Integrating above,

dy=(2x+2)dx

⇒ y = (x22)2+2x+c

⇒ y = x2 + 2x + c

Area bounded by y = y(x) and x-axis is 483

Using equation (i), at x-axis (y = 0)

x2 + 2x + c = 0

x = -2±4-4c2

⇒ x = -1±1-c


A = 2-1-1+1-c{-(x+1)2-c+1}dx=483

[-(x+1)33-cx+x]-1-1+1-c=283

-(1-c)33-c(-1+1-c)+(-1+1-c)-c+1=283

-(1-c)3+3c-3c1-c-3+31-c-3c+3=28

-(1-c)3-3c1-c+31-c=28

⇒ c = –1

Now using Equation (i)

y = y(x) = x2 + 2x – 1

⇒ y(1) = 2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.