English

If an Be the Area Bounded by the Curve Y = (Tan X)N and the Lines X = 0, Y = 0 and X = π/4, Then for X > 2 - Mathematics

Advertisements
Advertisements

Question

If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2

Options

  • An + An −2 = \[\frac{1}{n - 1}\]

  • An + An − 2 < \[\frac{1}{n - 1}\]

  • An − An − 2 = \[\frac{1}{n - 1}\]

  • none of these

MCQ

Solution

An + An −2 =\[\frac{1}{n - 1}\]

\[A_n =\] Area bounded by the curve "
\[y = \left\{ \tan\left( x \right) \right\}^n = \tan^n \left( x \right)\] and the lines \[x = 0, y = 0,\] and \[x = \frac{\pi}{4}\]
Therefore,

\[A_n = \int_0^\frac{\pi}{4} \tan^n \left( x \right) d x\]
\[ \Rightarrow A_{n - 2} = \int_0^\frac{\pi}{4} \tan^{n - 2} \left( x \right) d x\]
Consider, "
\[A_n = \int_0^\frac{\pi}{4} \tan^n \left( x \right) d x\]
\[\Rightarrow A_n = \int_0^\frac{\pi}{4} \left\{ \tan^{n - 2} \left( x \right) \right\}\left\{ \tan^2 \left( x \right) \right\} d x\]
\[ \Rightarrow A_n = \int_0^\frac{\pi}{4} \left\{ \tan^{n - 2} \left( x \right) \right\}\left\{ \sec^2 \left( x \right) - 1 \right\} d x\]
\[ \Rightarrow A_n = \int_0^\frac{\pi}{4} \left\{ \tan^{n - 2} \left( x \right) \sec^2 \left( x \right) - \tan^{n - 2} \left( x \right) \right\} d x\]
\[ \Rightarrow A_n = \int_0^\frac{\pi}{4} \left\{ \tan^{n - 2} \left( x \right) \sec^2 \left( x \right) \right\} d x - \int_0^\frac{\pi}{4} \tan^{n - 2} \left( x \right) d x\]

\[\Rightarrow A_n + A_{n - 2} = \int_0^\frac{\pi}{4} \tan^{n - 2} \left( x \right) \sec^2 \left( x \right) d x\]
Now, 
\[A_n + A_{n - 2} = \int_0^\frac{\pi}{4} \tan^{n - 2} \left( x \right) \sec^2 \left( x \right) d x\]
\[\text{Let }u = \tan\left( x \right)\]
\[ \Rightarrow d u = \sec^2 \left( x \right)dx\]
Also, when \[x = 0, u = 0\] and when \[x = \frac{\pi}{4}, u = 1\]
Therefore,
\[A_n + A_{n - 2} = \int_0^\frac{\pi}{4} \tan^{n - 2} \left( x \right) \sec^2 \left( x \right) d x\]
\[= \int_0^1 \left( u^{n - 2} \right) d u\]
\[ = \left[ \frac{u^{n - 1}}{n - 1} \right]_0^1 \]
\[ = \left[ \frac{1}{n - 1} - 0 \right] = \frac{1}{n - 1}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - MCQ [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
MCQ | Q 6 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


The area bounded by the curve y = 4x − x2 and the x-axis is __________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×