English

RD Sharma solutions for Mathematics [English] Class 12 chapter 21 - Areas of Bounded Regions [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 12 chapter 21 - Areas of Bounded Regions - Shaalaa.com
Advertisements

Solutions for Chapter 21: Areas of Bounded Regions

Below listed, you can find solutions for Chapter 21 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.


Exercise 21.1Exercise 21.2Exercise 21.3Exercise 21.4MCQ
Exercise 21.1 [Pages 14 - 16]

RD Sharma solutions for Mathematics [English] Class 12 21 Areas of Bounded Regions Exercise 21.1 [Pages 14 - 16]

Exercise 21.1 | Q 1 | Page 14

Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.

Exercise 21.1 | Q 2 | Page 14

Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.

Exercise 21.1 | Q 3 | Page 15

Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 

Exercise 21.1 | Q 4 | Page 15

Find the area lying above the x-axis and under the parabola y = 4x − x2.

Exercise 21.1 | Q 5 | Page 15

Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.

Exercise 21.1 | Q 6 | Page 15

Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.

Exercise 21.1 | Q 7 | Page 15

Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.

Exercise 21.1 | Q 8 | Page 15

Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.

Exercise 21.1 | Q 9 | Page 15

Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.

Exercise 21.1 | Q 10 | Page 15

Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.

Exercise 21.1 | Q 11 | Page 15

Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.

Exercise 21.1 | Q 12 | Page 15

Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.

Exercise 21.1 | Q 13 | Page 15

Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.

Exercise 21.1 | Q 14 | Page 15

Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.

Exercise 21.1 | Q 15 | Page 15

Using definite integrals, find the area of the circle x2 + y2 = a2.

Exercise 21.1 | Q 16 | Page 15

Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.

Exercise 21.1 | Q 17 | Page 15

Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.

Exercise 21.1 | Q 18 | Page 15

Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?

Exercise 21.1 | Q 19 | Page 15

Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?

Exercise 21.1 | Q 20 | Page 15

Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.

Exercise 21.1 | Q 21 | Page 15

Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.

Exercise 21.1 | Q 22 | Page 15

Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.

Exercise 21.1 | Q 23 | Page 16

Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.

Exercise 21.1 | Q 24 | Page 16

Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.

Exercise 21.1 | Q 25 | Page 16

Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.

Exercise 21.1 | Q 26 | Page 16

Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]  and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.

 

 

Exercise 21.1 | Q 27 | Page 16

Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]

Exercise 21.1 | Q 28 | Page 16

Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.

Exercise 21.1 | Q 29 | Page 16

Find the area enclosed by the curve x = 3cost, y = 2sin t.

Exercise 21.2 [Page 24]

RD Sharma solutions for Mathematics [English] Class 12 21 Areas of Bounded Regions Exercise 21.2 [Page 24]

Exercise 21.2 | Q 1 | Page 24

Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.

Exercise 21.2 | Q 2 | Page 24

Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 
Exercise 21.2 | Q 3 | Page 24

Find the area of the region bounded by x2 = 4ay and its latusrectum.

Exercise 21.2 | Q 4 | Page 24

Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.

Exercise 21.2 | Q 5 | Page 24

Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.

Exercise 21.3 [Pages 51 - 53]

RD Sharma solutions for Mathematics [English] Class 12 21 Areas of Bounded Regions Exercise 21.3 [Pages 51 - 53]

Exercise 21.3 | Q 1 | Page 51

Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.

Exercise 21.3 | Q 2 | Page 51

Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.

Exercise 21.3 | Q 3 | Page 51

Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.

Exercise 21.3 | Q 4 | Page 51

Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.

Exercise 21.3 | Q 5 | Page 51

Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]

Exercise 21.3 | Q 6 | Page 51

Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).

Exercise 21.3 | Q 7 | Page 51

Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.

Exercise 21.3 | Q 8 | Page 51

Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.

Exercise 21.3 | Q 9 | Page 51

Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.

Exercise 21.3 | Q 10 | Page 51

Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.

Exercise 21.3 | Q 11 | Page 51

Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.

Exercise 21.3 | Q 12 | Page 51

Find the area of the region included between the parabola y2 = x and the line x + y = 2.

Exercise 21.3 | Q 13 | Page 51

Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.

Exercise 21.3 | Q 14 | Page 51

Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.

Exercise 21.3 | Q 15 | Page 51

Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.

Exercise 21.3 | Q 16 | Page 51

Find the area included between the parabolas y2 = 4ax and x2 = 4by.

Exercise 21.3 | Q 17 | Page 51

Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.

Exercise 21.3 | Q 18 | Page 51

Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.

Exercise 21.3 | Q 19 | Page 51

Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.

Exercise 21.3 | Q 20 | Page 51

Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.

Exercise 21.3 | Q 21 | Page 51

Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.

Exercise 21.3 | Q 22 | Page 52

Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.

Exercise 21.3 | Q 23 | Page 52

Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 

Exercise 21.3 | Q 24 | Page 52

Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.

Exercise 21.3 | Q 25 | Page 52

Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.

Exercise 21.3 | Q 26 | Page 52

Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.

Exercise 21.3 | Q 27 | Page 52

Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).

Exercise 21.3 | Q 28 | Page 52

Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 

Exercise 21.3 | Q 29 | Page 52

Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.

Exercise 21.3 | Q 30 | Page 52

Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.

Exercise 21.3 | Q 31 | Page 52

Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.

Exercise 21.3 | Q 32 | Page 52

Find the area bounded by the curves x = y2 and x = 3 − 2y2.

Exercise 21.3 | Q 33 | Page 52

Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).

Exercise 21.3 | Q 34 | Page 52

Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]

Exercise 21.3 | Q 35 | Page 52

Find the area of the region bounded by y = | x − 1 | and y = 1.

Exercise 21.3 | Q 36 | Page 52

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.

Exercise 21.3 | Q 37 | Page 52

Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.

Exercise 21.3 | Q 38 | Page 52

Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.

Exercise 21.3 | Q 39 | Page 52

Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.

Exercise 21.3 | Q 40 | Page 52

Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.

Exercise 21.3 | Q 41 | Page 52

Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.

Exercise 21.3 | Q 42 | Page 52

Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.

Exercise 21.3 | Q 43 | Page 52

Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.

Exercise 21.3 | Q 44 | Page 52

Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]

Exercise 21.3 | Q 45 | Page 53

Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.

Exercise 21.3 | Q 46 | Page 53

Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.

Exercise 21.3 | Q 47 | Page 53

Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.

Exercise 21.3 | Q 48 | Page 53

Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.

Exercise 21.3 | Q 49 | Page 53

In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?

Exercise 21.3 | Q 50 | Page 53

Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.

Exercise 21.3 | Q 51 | Page 53

If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 

Exercise 21.3 | Q 52 | Page 53

If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.

Exercise 21.4 [Page 61]

RD Sharma solutions for Mathematics [English] Class 12 21 Areas of Bounded Regions Exercise 21.4 [Page 61]

Exercise 21.4 | Q 1 | Page 61

Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.

Exercise 21.4 | Q 2 | Page 61

Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.

Exercise 21.4 | Q 3.1 | Page 61

Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.

Exercise 21.4 | Q 3.2 | Page 61

Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.

Exercise 21.4 | Q 4 | Page 61

Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.

MCQ [Pages 62 - 64]

RD Sharma solutions for Mathematics [English] Class 12 21 Areas of Bounded Regions MCQ [Pages 62 - 64]

MCQ | Q 1 | Page 62

If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .

  • 1/2

  • 1

  • -1

  • 2

MCQ | Q 2 | Page 62

The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)

  • 4/3

  • 1/3

  • 16/3

  • 8/3

MCQ | Q 3 | Page 62

The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .

  • e sq. units

  • 1 sq. units

  • 1−\[\frac{1}{e}\] sq. units

  • 1+\[\frac{1}{e}\] sq. units

MCQ | Q 4 | Page 62

The area bounded by y = 2 − x2 and x + y = 0 is _________ .

  • \[\frac{7}{2}\] sq. units

  • \[\frac{9}{2}\] sq. units

  • 9 sq. units

  • none of these

MCQ | Q 5 | Page 62

The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .

  • \[\frac{3}{32}\]

  • \[\frac{32}{3}\]

  • \[\frac{33}{2}\]

  • \[\frac{16}{3}\]

MCQ | Q 6 | Page 62

If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2

  • An + An −2 = \[\frac{1}{n - 1}\]

  • An + An − 2 < \[\frac{1}{n - 1}\]

  • An − An − 2 = \[\frac{1}{n - 1}\]

  • none of these

MCQ | Q 7 | Page 62

The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .

  • \[\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}\]

  • \[\frac{\pi}{6} + \frac{\sqrt{3} + 1}{8}\]

  • \[\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]

  • none of these

MCQ | Q 8 | Page 62

The area enclosed between the curves y = loge (x + e), x = log\[\left( \frac{1}{y} \right)\] and the x-axis is _______ .

  • 2

  • 1

  • 4

  • none of these

MCQ | Q 9 | Page 62

The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .

  • 3

  • 6

  • 7

  • none of these

MCQ | Q 10 | Page 62

The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .

  • 2 sq. units

  • 4 sq. units

  • 3 sq. units

  • 1 sq. unit

MCQ | Q 11 | Page 62

The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .

  • \[\frac{8 a^3}{3}\]

  • \[\frac{16 a^2}{3}\]

  • \[\frac{32 a^2}{3}\]

  • \[\frac{64 a^2}{3}\]

MCQ | Q 12 | Page 62

The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .

  • 1

  • \[\frac{91}{30}\]

  • \[\frac{30}{9}\]

  • 4

MCQ | Q 13 | Page 63

The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .

  • 0

  • \[\frac{4}{3} a^2\]

  • \[\frac{2}{3} a^2\]

  • \[\frac{a^2}{3}\]

MCQ | Q 14 | Page 63

The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .

  • \[\frac{\pi}{5}\]

  • \[\frac{\pi}{4}\]

  • \[\frac{\pi}{2} - \frac{1}{2}\]

  • \[\frac{\pi^2}{2}\]

  • None of these

MCQ | Q 15 | Page 63

The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .

  • \[\frac{2}{3}\]sq. units

  • \[\frac{3}{2}\]sq. units

  • \[\frac{32}{3}\]sq. units

  • \[\frac{3}{32}\]sq. units

MCQ | Q 16 | Page 63

The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by

  • \[\frac{45}{7}\]

  • \[\frac{25}{4}\]

  • \[\frac{\pi}{18}\]

  • \[\frac{9}{2}\]

MCQ | Q 17 | Page 63

The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .

  • 1 : 2

  • 2 : 1

  • \[\sqrt{3}\]

  • none of these

MCQ | Q 18 | Page 63

The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .

  • 0

  • 2

  • 3

  • 4

MCQ | Q 19 | Page 63

Area bounded by parabola y2 = x and straight line 2y = x is _________ .

  • `4/3`

  • 1

  • `2/3`

  • `1/3`

MCQ | Q 20 | Page 63

The area bounded by the curve y = 4x − x2 and the x-axis is __________ .

  • \[\frac{30}{7}\]sq. units

  • \[\frac{31}{7}\]sq. units

  • \[\frac{32}{3}\]sq. units

  • \[\frac{34}{3}\]sq. units

MCQ | Q 21 | Page 63

Area enclosed between the curve y2 (2a − x) = x3 and the line x = 2a above x-axis is ___________ .

  • πa2

  • \[\frac{3}{2}\pi a^2\]

  • 2πa2

  • 3πa2

MCQ | Q 22 | Page 63

The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is

  • 1

  • 2/3

  • 4/3

  • 8/3

MCQ | Q 23 | Page 63

The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .

  • (x − 1) cos (3x + 4)

  • sin (3x + 4)

  • sin (3x + 4) + 3 (x − 1) cos (3x +4)

  • none of these

MCQ | Q 24 | Page 63

The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .

  • \[\frac{16}{3}\]sq. units

  • \[\frac{3}{16}\]sq. units

  • \[\frac{14}{3}\]sq. units

  • \[\frac{3}{14}\]sq. units

  • None of these

MCQ | Q 25 | Page 63

The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .

  • \[\frac{16}{3}\]
  • \[\frac{23}{3}\]
  • \[\frac{32}{3}\]
  • \[\frac{16\sqrt{2}}{3}\]
MCQ | Q 26 | Page 63

Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.

  • −9

  • `(-15)/4`

  • `15/4`

  • `17/4`

MCQ | Q 27 | Page 64

The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by

  • 0

  • \[\frac{1}{3}\]
  • \[\frac{2}{3}\]
  • \[\frac{4}{3}\]
MCQ | Q 28 | Page 64

The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .

  • 2\[\left( \sqrt{2} - 1 \right)\]

  • \[\sqrt{2} - 1\]
  • \[\sqrt{2} + 1\]
  • \[\sqrt{2}\]
MCQ | Q 29 | Page 64

The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is

  • \[\frac{4}{3}\left( 4\pi - \sqrt{3} \right)\]
  • \[\frac{4}{3}\left( 4\pi + \sqrt{3} \right)\]
  • \[\frac{4}{3}\left( 8\pi - \sqrt{3} \right)\]
  • \[\frac{4}{3}\left( 8\pi + \sqrt{3} \right)\]
MCQ | Q 30 | Page 64

Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

  • 2 (π − 2)

  • π − 2

  • 2π − 1

  • 2 (π + 2)

MCQ | Q 31 | Page 64

Area lying between the curves y2 = 4x and y = 2x is

  • \[\frac{2}{3}\]
  • \[\frac{1}{3}\]
  • \[\frac{1}{4}\]
  • \[\frac{3}{4}\]
MCQ | Q 32 | Page 64

Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is

  • π

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{3}\]
  • \[\frac{\pi}{4}\]
MCQ | Q 33 | Page 64

Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is

  • 2

  • \[\frac{9}{4}\]
  • \[\frac{9}{3}\]
  • \[\frac{9}{2}\]

Solutions for 21: Areas of Bounded Regions

Exercise 21.1Exercise 21.2Exercise 21.3Exercise 21.4MCQ
RD Sharma solutions for Mathematics [English] Class 12 chapter 21 - Areas of Bounded Regions - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 12 chapter 21 - Areas of Bounded Regions

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 21 (Areas of Bounded Regions) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 12 chapter 21 Areas of Bounded Regions are Area of the Region Bounded by a Curve and a Line, Area Between Two Curves, Area Under Simple Curves.

Using RD Sharma Mathematics [English] Class 12 solutions Areas of Bounded Regions exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 21, Areas of Bounded Regions Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×