Advertisements
Advertisements
Question
Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\] are in the ratio 2 : 3.
Solution
\[\text{ The shaded area }A_2 \text{ is the required area bound by the curve }y = \sin 2x\text{ and }x = 0, x = \frac{\pi}{3}\]
\[ \therefore A_1 = \int_0^\frac{\pi}{3} \left| y \right| dx\]
\[ \Rightarrow A_1 = \int_0^\frac{\pi}{3} y dx ................\left[ As, y > 0 , \left| y \right| = y \right]\]
\[ \Rightarrow A_1 = \int_0^\frac{\pi}{3} \sin x dx\]
\[ \Rightarrow A_1 = \left[ - \cos x \right]_0^\frac{\pi}{3} \]
\[ \Rightarrow A_1 = - \cos \frac{\pi}{3} + \cos 0\]
\[ \Rightarrow A_1 = - \frac{1}{2} + 1 = \frac{1}{2} ................\left( 1 \right)\]
And,
\[ A_2 = \int_0^\frac{\pi}{3} \left| y \right| dx\]
\[ \Rightarrow A_2 = \int_0^\frac{\pi}{3} y dx ..............\left[ As, y > 0 , \left| y \right| = y \right]\]
\[ \Rightarrow A_2 = \int_0^\frac{\pi}{3} \sin 2x dx\]
\[ \Rightarrow A_2 = \int_0^\frac{\pi}{3} 2 \sin x \cos x dx\]
\[ \Rightarrow A_2 = 2 \left[ \frac{- 1}{4}\cos 2x \right]_0^\frac{\pi}{3} \]
\[ \Rightarrow A_2 = \frac{1}{2}\left[ - \cos \frac{2\pi}{3} + \cos 0 \right]\]
\[ \Rightarrow A_2 = \frac{1}{2}\left[ 1 + \frac{1}{2} \right] = \frac{1}{2} \times \frac{3}{2} ..............\left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and }\left( 2 \right)\]
\[\frac{A_1}{A_2} = \frac{\frac{1}{2}}{\frac{1}{2} \times \frac{3}{2}} = \frac{2}{3}\]
\[\text{ Thus, the area of curve }y = \sin x\text{ and }y = \sin 2x \text{ for }x = 0\text{ and }x = \frac{\pi}{3}\text{ are in the ratio }2 : 3 \]
APPEARS IN
RELATED QUESTIONS
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.