English

Find the Area Enclosed by the Parabolas Y = 4x − X2 and Y = X2 − X. - Mathematics

Advertisements
Advertisements

Question

Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.

Sum

Solution


We have, 
\[y = 4x - x^2\]  and \[y = x^2 - x\]
The points of intersection of two curves is obtained by solving the simultaneous equations
\[\therefore x^2 - x = 4x - x^2 \]
\[ \Rightarrow 2 x^2 - 5x = 0 \]
\[ \Rightarrow x = 0\text{ or }x = \frac{5}{2}\]
\[ \Rightarrow y = 0\text{ or }y = \frac{15}{4}\]
\[ \Rightarrow O\left( 0, 0 \right)\text{ and }D \left( \frac{5}{2} , \frac{15}{4} \right)\text{ are points of intersection of two parabolas .} \]
\[ \text{ In the shaded area CBDC , consider P }(x, y_2 )\text{ on }y = 4x - x^2\text{ and Q }(x, y_1 )\text{ on }y = x^2 - x\]
\[\text{ Area }\left( OBDCO \right) =\text{ area }\left( OBCO \right) +\text{ area }\left( CBDC \right)\]
\[ = \int_0^1 \left| y \right| dx + \int_1^\frac{5}{2} \left| y_2 - y_1 \right| dx\]
\[ = \int_0^1 y dx + \int_1^\frac{5}{2} \left( y_2 - y_1 \right) dx ............\left\{ \because y > 0 \Rightarrow \left| y \right| = y\text{ and } \left| y_2 - y_1 \right| \Rightarrow y_2 - y_1\text{ as }y_2 > y_1 \right\} \]
\[ = \int_0^1 \left( 4x - x^2 \right)dx + \int_1^\frac{5}{2} \left\{ \left( 4x - x^2 \right) - \left( x^2 - x \right) \right\}dx\]
\[ = \left[ \frac{4 x^2}{2} - \frac{x^3}{3} \right]_0^1 + \int_1^\frac{5}{2} \left( 5x - 2 x^2 \right)dx\]
\[ = \left[ 2 x^2 - \frac{x^3}{3} \right]_0^1 + \left[ \frac{5 x^2}{2} - \frac{2 x^3}{3} \right]_1^\frac{5}{2} \]
\[ = \left( 2 - \frac{1}{3} \right) + \left[ \frac{5}{2} \left( \frac{5}{2} \right)^2 - \frac{2}{3} \left( \frac{5}{2} \right)^3 - \frac{5}{2} + \frac{2}{3} \right]\]
\[ = \left( \frac{5}{3} \right) + \left[ \left( \frac{5}{2} \right)^3 \left( 1 - \frac{2}{3} \right) - \frac{11}{6} \right]\]
\[ = \frac{5}{3} + \left( \frac{5}{2} \right)^3 \frac{1}{3} - \frac{11}{6}\]
\[ = \frac{10 - 11}{6} + \frac{125}{24} \]
\[ = \frac{121}{24}\text{ sq units }. ...... . \left( 1 \right)\]
\[\text{ Area }\left( OCV'O \right) = \int_0^1 \left| y \right| dx = \int_0^1 - y dx ............\left\{ \because y < 0 \Rightarrow \left| y \right| = - y \right\}\]
\[ = \int_0^1 - \left( x^2 - x \right)dx\]
\[ = \int_0^1 \left( x - x^2 \right) dx\]
\[ = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 \]
\[ = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}\text{ sq units }. ...... . \left( 2 \right)\]
\[\text{ From }\left( 1 \right)\text{ and }\left( 2 \right)\]
\[\text{ Shaded area = area }\left( OBDCO \right)\text{ and area }\left( OCV'O \right)\]
\[ = \frac{121}{24} + \frac{1}{6}\]
\[ = \frac{125}{24}\text{ sq units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 53]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 48 | Page 53

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.


Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Evaluate:

`int_0^1x^2dx`


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×