English

Find the Area of the Region Bounded by the Curve X = a T 2 , Y = 2 at Between the Ordinates Corresponding T = 1 and T = 2. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.

Sum

Solution

The curve \[x = a t^2 , y = 2\text{ at }\]  represents the parametric equation of the parabola.

Eliminating the parameter t, we get \[y^2 = 4ax\]

This represents the Cartesian equation of the parabola opening towards the positive x-axis with focus at (a, 0).

When t = 1, x = a

When t = 2, x = 4a

∴ Required area = Area of the shaded region
                           = 2 × Area of the region ABCFA

\[= 2 \int_a^{4a} y_{\text{ parabola }} dx\]
\[ = 2 \int_a^{4a} \sqrt{4ax}dx\]
\[ = \left.2 \times {2\sqrt{a} \times \frac{x^\frac{3}{2}}{\frac{3}{2}}}\right|_a^{4a} \]
\[ = \frac{8\sqrt{a}}{3}\left[ \left( 4a \right)^\frac{3}{2} - a^\frac{3}{2} \right]\]
\[ = \frac{8\sqrt{a}}{3}\left( 8a\sqrt{a} - a\sqrt{a} \right)\]
\[ = \frac{8\sqrt{a}}{3} \times 7a\sqrt{a}\]
\[ = \frac{56}{3} a^2\text{ square units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.1 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.1 | Q 28 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of the region included between y2 = 9x and y = x


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×