English

Find the area of the region bounded by the curves y2 = 9x, y = 3x - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by the curves y2 = 9x, y = 3x

Sum

Solution


We have, y2 = 9x, y = 3x

Solving the two equations,

We have (3x)2 = 9x

⇒ 9x2 – 9x = 0

⇒ 9x(x – 1) = 0

∴ x = 0, 1

Area of the shaded region

= ar (region OAB) – ar (ΔOAB)

= `- int_0^1 y_1 * "d"x`

= `int_0^1 sqrt(9x)  "d"x - int_0^1 3x  "d"x`

= `3 int_0^1 sqrt(x)  "d"x - 3 int_0^1 x  "d"x`

= `3 xx 2/3 [x^(3/2)]_0^1 - 3[x^2/2]_0^1`

= `2[(1)^(3/2) - 0] - 3/2 [(1)^2 - 0]`

= `2(1) - 3/2 (1)`

= `2 - 3/2`

= `1/2` sq.units

Hence, the required area = `1/2` sq.units

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application Of Integrals - Exercise [Page 176]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 8 Application Of Integrals
Exercise | Q 1 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of the region bounded by y = `sqrt(x)` and y = x.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×