Advertisements
Advertisements
Question
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
Solution
Let the two curves be named as y1 and y2 where
\[y_1 : \left( x - 3 \right)^2 + y^2 = 9 . . . . . \left( 1 \right)\]
\[ y_2 : x^2 + y^2 = 9 . . . . . \left( 2 \right)\]
The curve x2 + y2 = 9 represents a circle with centre (0, 0) and the radius is 3.
The curve (x − 3)2 + y2 = 9 represents a circle with centre (3, 0) and has a radius 3.
To find the intersection points of two curves equate them.
On solving (1) and (2) we get
Therefore, intersection points are
Now, the required area (OABO) =2 [area(OACO) +area (CABC)]
Here,
Thus the required area is given by,
A = 2 [area(OACO) +area(CABC)]
Hence the required area is \[6\pi - \frac{9\sqrt{3}}{2}\] square units.
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.
[Hint: y = x2 if x > 0 and y = –x2 if x < 0]
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Using definite integrals, find the area of the circle x2 + y2 = a2.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.