English

Find the Area of the Region Enclosed Between the Two Curves X2 + Y2 = 9 and (X − 3)2 + Y2 = 9. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.

Sum

Solution

Let the two curves be named as y1 and y2 where
\[y_1 : \left( x - 3 \right)^2 + y^2 = 9 . . . . . \left( 1 \right)\]
\[ y_2 : x^2 + y^2 = 9 . . . . . \left( 2 \right)\]
The curve x2 + y2 = 9 represents a circle with centre (0, 0) and the radius is 3.
The curve (x − 3)2 + y2 = 9 represents a circle with centre (3, 0)  and has a radius 3.
To find the intersection points of two curves equate them.
On solving (1) and (2) we get

\[x = \frac{3}{2}\text{ and }y = \pm \frac{3\sqrt{3}}{2}\]
Therefore, intersection points are
\[\left( \frac{3}{2}, \frac{3\sqrt{3}}{2} \right)\text{ and }\left( \frac{3}{2}, - \frac{3\sqrt{3}}{2} \right)\]
Now, the required area (OABO) =2 [area(OACO) +area (CABC)]
Here,
\[\text{ Area }\left( OACO \right) = \int_0^\frac{3}{2} Y_1 d x\]
\[= \int_0^\frac{3}{2} \sqrt{9 - \left( x - 3 \right)^2} d x\] 
And
\[\text{ Area }\left( CABC \right) = \int_\frac{3}{2}^3 \left| Y_2 \right| d x\]
\[= \int_\frac{3}{2}^3 \sqrt{9 - x^2}dx\]
Thus the required area is given by,
A = 2 [area(OACO) +area(CABC)]
\[2\left( \int_0^\frac{3}{2} \sqrt{9 - \left( x - 3 \right)^2} d x + \int_\frac{3}{2}^3 \sqrt{9 - x^2} d x \right)\]
\[= 2 \left[ \frac{\left( x - 3 \right)}{2}\sqrt{9 - \left( x - 3 \right)^2} + \frac{9}{2} \sin^{- 1} \left( \frac{x - 3}{3} \right) \right]_0^\frac{3}{2} + 2 \left[ \frac{x}{2}\sqrt{9 - x^2} + \frac{9}{2} \sin^{- 1} \left( \frac{x}{3} \right) \right]^3_\frac{3}{2}\]
\[= 2\left[ \frac{\frac{3}{2} - 3}{2}\sqrt{9 - \left( \frac{3}{3} - 3 \right)^2} + \frac{9}{2} \sin^{- 1} \left( \frac{\frac{3}{2} - 3}{3} \right) - \frac{0 - 3}{2}\sqrt{9 - \left( 0 - 3 \right)^2} - \frac{9}{2} \sin^{- 1} \left( \frac{0 - 3}{3} \right) \right] + 2\left[ \frac{3}{2}\sqrt{9 - 3^2} + \frac{9}{2} \sin^{- 1} \left( \frac{3}{3} \right) - \left( \frac{3}{4}\sqrt{9 - \frac{9}{4}} \right) - \frac{9}{2} \sin^{- 1} \left( \frac{\frac{3}{2}}{3} \right) \right]\]
\[= 2\left[ - \frac{9\sqrt{3}}{8} - \frac{9\pi}{12} + \frac{9\pi}{4} \right] + 2\left[ \frac{9\pi}{4} - \frac{9\sqrt{3}}{8} - \frac{9\pi}{12} \right]\]
\[= - \frac{18\sqrt{3}}{8} - \frac{18\pi}{12} + \frac{18\pi}{4} + \frac{18\pi}{4} - \frac{18\sqrt{3}}{8} - \frac{18\pi}{12}\]
\[= \frac{- 36\sqrt{3}}{8} - \frac{36\pi}{12} + \frac{36\pi}{4}\]
\[= - \frac{9\sqrt{3}}{2} - 3\pi + 9\pi\]
\[= 6\pi - \frac{9\sqrt{3}}{2}\]
Hence the required area is \[6\pi - \frac{9\sqrt{3}}{2}\] square units.
shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 52]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 42 | Page 52

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Using definite integrals, find the area of the circle x2 + y2 = a2.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×