English

Sketch the Graph Y = | X + 1 |. Evaluate 2 ∫ − 4 | X + 1 | D X . What Does the Value of this Integral Represent on the Graph? - Mathematics

Advertisements
Advertisements

Question

Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?

Sum

Solution

We have,
y = | x + 1 | intersect x = −4 and x = 2 at (−4, 3) and (2, 3) respectively.
Now,
\[y = \left| x + 1 \right|\]
\[ = \begin{cases}\left( x + 1 \right)&\text{ For all }x > - 1\\ - \left( x + 1 \right)&\text{ For all }x < - 1\end{cases}\]
Integral represents the area enclosed between x = −4 and x = 2
\[A = \int_{- 4}^2 \left| y \right| d x\]
\[ = \int_{- 4}^{- 1} \left| y \right| d x + \int_{- 1}^2 \left| y \right| d x\]
\[ = \int_{- 4}^{- 1} - \left( x + 1 \right) d x + \int_{- 1}^2 \left( x + 1 \right) d x\]
\[ = - \left[ \frac{x^2}{2} + x \right]_{- 4}^{- 1} + \left[ \frac{x^2}{2} + x \right]_{- 1}^2 \]
\[ = - \left[ \frac{1}{2} - 1 - \frac{16}{2} + 4 \right] + \left[ \frac{4}{2} + 2 - \frac{1}{2} + 1 \right]\]
\[ = - \left[ 3 - \frac{15}{2} \right] + \left[ 5 - \frac{1}{2} \right]\]
\[ = - 3 + \frac{15}{2} + 5 - \frac{1}{2}\]
\[ = 9\text{ sq . units }\]


shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.1 | Q 19 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region bounded by y = `sqrt(x)` and y = x.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


The curve x = t2 + t + 1,y = t2 – t + 1 represents


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×