English

Find the Area Enclosed by the Parabolas Y = 5x2 And Y = 2x2 + 9. - Mathematics

Advertisements
Advertisements

Question

Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.

Sum

Solution

\[y = 5 x^2\text{ represents a parabola with vertex at O }\left( 0, 0 \right)\text{ and opening upwards , symmetrical about + ve }y \text{ axis }\]
\[y = 2 x^2 + 9\text{ represents the wider parabola , with vertex at C }\left( 0, 9 \right) \]
To find point of intersection , solve the two equations
\[5 x^2 = 2 x^2 + 9 \]
\[ \Rightarrow 3 x^2 = 9\]
\[ \Rightarrow x = \pm \sqrt{3}\]
\[ \Rightarrow y = 15\]
\[\text{ Thus A }\left( \sqrt{3}, 15 \right)\text{ and A'}\left( - \sqrt{3}, 15 \right)\text{ are points of intersection of the two parabolas . }\]
\[\text{ Shaded area A'OA }= 2 \times\text{ area }\left( OCAO \right)\]
\[\text{ Consider a vertical stip of length }= \left| y_2 - y_1 \right|\text{ and width }= dx \]
\[\text{ Area of approximating rectangle }= \left| y_2 - y_1 \right|dx \]
\[\text{ The approximating rectangle moves from }x = 0 \text{ to }x = \sqrt{3}\]
\[ \therefore \text{ Area }\left( OCAO \right) = \int_0^\sqrt{3} \left| y_2 - y_1 \right|dx = \int_0^\sqrt{3} \left( y_2 - y_1 \right)dx .............\left\{ \because \left| y_2 - y_1 \right| = y_2 - y_1\text{ as }y_2 > y_1 \right\}\]
\[ = \int_0^\sqrt{3} \left( 2 x^2 + 9 - 5 x^2 \right)dx \]
\[ = \int_0^\sqrt{3} \left( 9 - 3 x^2 \right)dx\]
\[ = \left[ \left( 9x - 3\frac{x^3}{3} \right) \right]_0^\sqrt{3} \]
\[ = 9\sqrt{3} - 3\sqrt{3}\]
\[ = 6\sqrt{3}\text{ sq units }\]
\[ \therefore\text{ Shaded area B'A'AB }= 2 \text{ area OCAO }= 2 \times 6\sqrt{3} = 12\sqrt{3}\text{ sq units }\]
\[\text{ Thus area enclosed by two parabolas }= 12\sqrt{3}\text{ sq units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 21 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region bounded by y = | x − 1 | and y = 1.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×