English

Find the Area of the Region Enclosed by the Parabola X2 = Y and the Line Y = X + 2. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.

Sum

Solution

 The points of intersection C and D are obtained by solving the two equations
\[\therefore x^2 = x + 2\]
\[ \Rightarrow x^2 - x - 2 = 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x + 1 \right) = 0\]
\[ \Rightarrow x = 2\text{ or }x = - 1\]
\[ \Rightarrow y = 2^2 = 4\text{ or }y = \left( - 1 \right)^2 = 1\]
\[\text{ Thus }C(\left( 2, 4 \right)\text{ and }D\left( - 1, 1 \right) \text{ are the points of intesection of two curves }\]
\[\text{ Consider a vertical steip of length }\left| y_2 - y_1 \right| \text{ and width dx where }P\left( x, y_2 \right)\text{ lies on straight line and }Q\left( x, y_1 \right)\text{ lies on the parabola }. \]
\[\text{ Area of approximating rectangle }= \left| y_2 - y_1 \right| dx ,\text{ and it moves from }x = - 1\text{ to }x = 2\]
\[\text{ Required area = area }\left( ODBCO \right) = \int_{- 1}^2 \left| y_2 - y_1 \right| dx\]
\[ = \int_{- 1}^2 \left( y_2 - y_1 \right) dx .............\left\{ \because \left| y_2 - y_1 \right| = y_2 - y_1 as y_2 > y_1 \right\}\]
\[ = \int_{- 1}^2 \left( \left( x + 2 \right) - x^2 \right) dx\]
\[ = \int_{- 1}^2 \left( x + 2 - x^2 \right) dx\]
\[ = \left[ \frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{- 1}^2 \]
\[ = \frac{4}{2} + 4 - \frac{8}{3} - \frac{1}{2} + 2 - \frac{1}{3}\]
\[ = \frac{9}{2}\text{ sq units }\]
\[\text{ Area enclosed by the line and given parabola }= \frac{9}{2}\text{ sq units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 52]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 38 | Page 52

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Find the area of the region bounded by x2 = 4ay and its latusrectum.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the curve y = 4x − x2 and the x-axis is __________ .


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


Find the area of the region included between y2 = 9x and y = x


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×