English

Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2. - Mathematics

Advertisements
Advertisements

Question

Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.

Solution

The equations of the given lines are

y = 2 + x    .....(1)

y = 2 – x    .....(2)

x = 2          .....(3)

Solving (1), (2) and (3) in pairs, we obtain the coordinates of the point of intersection as A(0, 2), B(2, 4) and C(2, 0).

The graphs of these lines are drawn as shown in the figure below.

Here, the shaded region represents the area bounded by the given lines.

∴ Required area = Area of the region ABCA

= Area of region ACDA + Area of region ABDA

`=∫_0^2xAC dy+∫_2^4xAB dy`

`=∫_0^2(2−y)dy+∫_2^4(y−2)dy`

`=(2y-y^2/2)_0^2+(Y^2/2-2y)_2^4`

=[(42)(00)]+[(88)(24)]

=2+2

=4 square units

Thus, the area of the region bounded by the given lines is 4 square units.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Patna Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×