Advertisements
Advertisements
Question
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
Solution
The intersecting points of the given curves are obtained by solving the equations x – y = 4 and y2 = 2x for x and y.
We have y2 = 8 + 2y
i.e., (y – 4)(y + 2) = 0
Which gives y = 4, –2 and x = 8, 2.
Thus, the points of intersection are (8, 4), (2, –2).
Hence Area = `int_(-2)^4 (4 + y - 1/2 y^2)"d"y`
= `|4y + y^2/2 - 1/6 y^3|_-2^4`
= 18 sq.units.
APPEARS IN
RELATED QUESTIONS
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.
Find the area of the region bounded by x2 = 4ay and its latusrectum.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.