Advertisements
Advertisements
Question
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
Solution
To find the points of intersection between the parabola and the line let us substitute y = 2x − 4 in y2 = 4x.
\[\left( 2x - 4 \right)^2 = 4x\]
\[ \Rightarrow 4 x^2 + 16 - 16x = 4x\]
\[ \Rightarrow 4 x^2 - 20x + 16 = 0\]
\[ \Rightarrow x^2 - 5x + 4 = 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 4 \right) = 0\]
\[ \Rightarrow x = 1, 4\]
\[\Rightarrow y = - 2, 4\]
Therefore, the points of intersection are C(1, −2) and A(4, 4).
Using Horizontal Strips:-
The area of the required region ABCD
\[A = \int_{- 2}^4 \left( x_1 - x_2 \right) dy ...........\left(\text{where,} x_1 = \frac{y + 4}{2}\text{ and }x_2 = \frac{y^2}{4} \right)\]
\[ = \int_{- 2}^4 \left[ \left( \frac{y + 4}{2} \right) - \left( \frac{y^2}{4} \right) \right] d y\]
\[ = \left[ \frac{y^2}{4} + 2y - \frac{y^3}{12} \right]_{- 2}^4 \]
\[ = \left( \frac{4^2}{4} + 2 \times 4 - \frac{4^3}{12} \right) - \left[ \frac{\left( - 2 \right)^2}{4} + 2\left( - 2 \right) - \frac{\left( - 2 \right)^3}{12} \right]\]
\[ = \left( 4 + 8 - \frac{16}{3} \right) - \left[ 1 - 4 + \frac{2}{3} \right]\]
\[ = 12 - \frac{16}{3} + 3 - \frac{2}{3}\]
\[ = 15 - \frac{18}{3}\]
\[ = 15 - \frac{18}{3}\]
\[ = 15 - 6 = 9\text{ sq . units }\]
APPEARS IN
RELATED QUESTIONS
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.
Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Find the area of the region bounded by y = `sqrt(x)` and y = x.
The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.