English

Draw a Rough Sketch and Find the Area of the Region Bounded by the Two Parabolas Y2 = 4x and X2 = 4y by Using Methods of Integration. - Mathematics

Advertisements
Advertisements

Question

Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.

Sum

Solution

To find the points of intersection between two parabola let us substitute \[x = \frac{y^2}{4}\] in \[x^2 = 4y\]

\[\left( \frac{y^2}{4} \right)^2 = 4y\]

\[ \Rightarrow y^4 - 64y = 0\]

\[ \Rightarrow y\left( y^3 - 64 \right) = 0\]

\[ \Rightarrow y = 0, 4\]

\[\Rightarrow x = 0, 4\]

Therefore, the points of intersection are \[A(4, 4)\] and \[C\left( 0, 0 \right)\] 
Therefore, the area of the required region ABCD = \[\int_0^4 y_1 d x - \int_0^4 y_2 d x\] where \[y_1 = 2\sqrt{x}\] and \[y_2 = \frac{x^2}{4}\]
Required Area
\[= \int_0^4 \left( 2\sqrt{x} \right) d x - \int_0^4 \left( \frac{x^2}{4} \right) d x\]
\[ = \left[ 2 \times \frac{2 x^\frac{3}{2}}{3} - \frac{x^3}{12} \right]_0^4 \]
\[ = \left[ \left( 2 \times \frac{2 \left( 4 \right)^\frac{3}{2}}{3} - \frac{\left( 4 \right)^3}{12} \right) - \left( 2 \times \frac{2 \left( 0 \right)^\frac{3}{2}}{3} - \frac{\left( 0 \right)^3}{12} \right) \right]\]
After simplifying we get, 
\[= \frac{32}{3} - \frac{16}{3} = \frac{16}{3}\] square units
shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 15 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The curve x = t2 + t + 1,y = t2 – t + 1 represents


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×