Advertisements
Advertisements
Question
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Solution
\[y^2 + 1 = x, x \leq 2\text{ is a parabola with vertex }(1, 0)\text{ and symmetrical about + ve side of }x - \text{ axis }\]
\[x = 2\text{ is a line parallel to }y -\text{ axis and cutting }x - \text{ axis at }(2, 0)\]
\[\text{ Consider, a vertical section of height }= \left| y \right| \text{ and width } = dx \text{ in the first quadrant }\]
\[ \Rightarrow\text{ area of corresponding rectangle }= \left| y \right| dx\]
\[\text{ Since, the corresponding rectangle is moving from }x = 1\text{ to }x = 2\text{ and the curve being symmetrical }\]
\[ \therefore\text{ A = area ABCA }= 2 \times\text{ area ABDA }\]
\[ \Rightarrow A = 2 \int_1^2 \left| y \right| dx \]
\[ \Rightarrow A = 2 \int_1^2 y dx ................\left[ \left| y \right| = y \text{ as }y > 0 \right]\]
\[ \Rightarrow A = 2 \int_1^2 \sqrt{x - 1} dx ..............\left[ y^2 + 1 = x \Rightarrow y = \sqrt{x - 1} \right] \]
\[ \Rightarrow A = 2 \left[ \frac{\left( x - 1 \right)^\frac{3}{2}}{\frac{3}{2}} \right]_1^2 \]
\[ \Rightarrow A = \frac{4}{3}\left( 1^\frac{3}{2} - 0 \right)\]
\[ \Rightarrow A = \frac{4}{3}\text{ sq . units }\]
\[ \therefore\text{ Enclosed area }= \frac{4}{3}\text{ sq . units }\]
APPEARS IN
RELATED QUESTIONS
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Find the area lying above the x-axis and under the parabola y = 4x − x2.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region bounded by x2 = 4ay and its latusrectum.
Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.
Area bounded by parabola y2 = x and straight line 2y = x is _________ .
Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).
Using integration, find the area of the region bounded by the parabola y2 = 4x and the circle 4x2 + 4y2 = 9.
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.
Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.